This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A196723 #22 Oct 13 2020 21:12:31 %S A196723 1,2,4,8,15,28,50,86,143,236,376,594,913,1380,2048,3016,4367,6302, %T A196723 8974,12670,17685,24580,33738,46072,62367,83990,112342,149734,198153, %U A196723 261562,343210,448694,583445,756846,976086,1255658,1607831,2053186,2610560,3312040,4183689 %N A196723 Number of subsets of {1..n} (including empty set) such that the pairwise sums of distinct elements are all distinct. %C A196723 The number of subsets of {1..n} such that every orderless pair of (not necessarily distinct) elements has a different sum is A143823(n). %H A196723 Fausto A. C. Cariboni, <a href="/A196723/b196723.txt">Table of n, a(n) for n = 0..110</a> %e A196723 a(4) = 15: {}, {1}, {2}, {3}, {4}, {1,2}, {1,3}, {1,4}, {2,3}, {2,4}, {3,4}, {1,2,3}, {1,2,4}, {1,3,4}, {2,3,4}. %p A196723 b:= proc(n, s) local sn, m; %p A196723 m:= nops(s); %p A196723 sn:= [s[], n]; %p A196723 `if`(n<1, 1, b(n-1, s) +`if`(m*(m+1)/2 = nops(({seq(seq( %p A196723 sn[i]+sn[j], j=i+1..m+1), i=1..m)})), b(n-1, sn), 0)) %p A196723 end: %p A196723 a:= proc(n) option remember; %p A196723 b(n-1, [n]) +`if`(n=0, 0, a(n-1)) %p A196723 end: %p A196723 seq(a(n), n=0..20); %t A196723 b[n_, s_] := b[n, s] = Module[{sn, m}, m = Length[s]; sn = Append[s, n]; If[n<1, 1, b[n-1, s] + If[m*(m+1)/2 == Length[ Union[ Flatten[ Table[ sn[[i]] + sn[[j]], {i, 1, m}, {j, i+1, m+1}]]]], b[n-1, sn], 0]]]; %t A196723 a[n_] := a[n] = b[n-1, {n}] + If[n == 0, 0, a[n-1]]; Table[a[n], {n, 0, 20}] (* _Jean-François Alcover_, Jan 31 2017, translated from Maple *) %t A196723 Table[Length[Select[Subsets[Range[n]],UnsameQ@@Plus@@@Subsets[#,{2}]&]],{n,0,10}] (* _Gus Wiseman_, Jun 03 2019 *) %Y A196723 Cf. A143823, A196719, A196720, A196721, A196722, A196724. %Y A196723 The subset case is A196723 (this sequence). %Y A196723 The maximal case is A325878. %Y A196723 The integer partition case is A325857. %Y A196723 The strict integer partition case is A325877. %Y A196723 Heinz numbers of the counterexamples are given by A325991. %Y A196723 Cf. A108917, A325858, A325862, A325863, A325864. %K A196723 nonn %O A196723 0,2 %A A196723 _Alois P. Heinz_, Oct 06 2011 %E A196723 Edited by _Gus Wiseman_, Jun 03 2019