This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A196736 #19 Mar 01 2020 06:34:52 %S A196736 1,2,3,4,5,7,8,9,11,12,13,15,16,17,19,23,25,27,29,31,32,33,35,37,41, %T A196736 43,45,47,49,51,53,59,61,63,64,65,67,71,73,75,77,79,81,83,87,89,91,95, %U A196736 97,99,101,103,107,109,113,119,121,123,125,127 %N A196736 Define k(x) = number of m such that A000005(gcd(n,m)) is x where m runs from 1 to n , x = 1,2,.. ; z = A000005( cototient(n) ) ; sequence gives numbers n such that n - ( Sum_{i=1..j} k(i) ) divides cototient(n) for any j <= z , k(i)>0. %C A196736 Sequence gives numbers n such that n - ( Sum_{i=1..j} k(i) ) are all distinct divisors of cototient(n) for all j <= z. %o A196736 (Sage) %o A196736 def is_A196736(n): # inefficient, for reference purposes %o A196736 k = lambda x: sum(1 for m in (1..n) if number_of_divisors(gcd(n,m))==x) %o A196736 cototient_n = n-euler_phi(n) %o A196736 z = number_of_divisors(cototient_n) if cototient_n > 0 else 0 %o A196736 v = [(n-sum(k(i) for i in (1..j))) for j in (1..z)] %o A196736 return len(set(v)) == len(v) and all(vi.divides(cototient_n) for vi in v) %o A196736 # _D. S. McNeil_, Oct 14 2011 %K A196736 nonn %O A196736 1,2 %A A196736 _Naohiro Nomoto_, Oct 06 2011