cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A196747 Numbers n such that 3 does not divide swing(n) = A056040(n).

Original entry on oeis.org

0, 1, 2, 6, 7, 8, 18, 19, 20, 24, 25, 26, 54, 55, 56, 60, 61, 62, 72, 73, 74, 78, 79, 80, 162, 163, 164, 168, 169, 170, 180, 181, 182, 186, 187, 188, 216, 217, 218, 222, 223, 224, 234, 235, 236, 240, 241, 242, 486, 487, 488, 492, 493, 494, 504, 505, 506, 510
Offset: 1

Views

Author

Peter Luschny, Oct 06 2011

Keywords

Crossrefs

Programs

  • Maple
    SwingExp := proc(m,n) local p, q; p := m;
    do q := iquo(n,p);
       if (q mod 2) = 1 then RETURN(1) fi;
       if q = 0 then RETURN(0) fi;
       p := p * m;
    od end:
    Search := proc(n,L) local m, i, r; m := n;
    for i in L do r := SwingExp(i,m);
       if r <> 0 then RETURN(NULL) fi
    od; n end:
    A196747_list := n -> Search(n,[3]):  # n is a search limit
  • Mathematica
    (* A naive solution *) sf[n_] := n!/Quotient[n, 2]!^2; Select[Range[0, 600], ! Divisible[sf[#], 3] &] (* Jean-François Alcover, Jun 28 2013 *)
  • PARI
    valp(n,p)=my(s); while(n\=p, s+=n); s
    is(n)=my(t=valp(n,3)); t%2==0 && 2*valp(n\2,3)==t \\ Charles R Greathouse IV, Feb 02 2016