This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A196755 #9 Feb 11 2025 13:33:50 %S A196755 5,1,1,1,0,2,2,4,0,2,6,7,9,0,3,2,8,1,1,9,7,6,3,5,0,8,6,9,8,9,5,4,5,9, %T A196755 4,7,7,0,9,7,3,4,2,5,7,3,8,5,6,6,8,5,0,9,8,6,8,8,4,8,0,4,0,8,8,8,8,0, %U A196755 7,0,5,5,0,0,0,4,5,7,7,2,2,0,7,0,0,6,0,9,2,5,9,4,2,6,4,2,9,4,5,8,8,6,7 %N A196755 Decimal expansion of the least x>0 satisfying 1=4x*sin(x). %H A196755 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A196755 0.51110224026790328119763508698954594770973... %t A196755 Plot[{1/x, Sin[x], 2 Sin[x], 3*Sin[x], 4 Sin[x]}, {x, 0, 2 Pi}] %t A196755 t = x /. FindRoot[1/x == Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100] %t A196755 RealDigits[t] (* A133866 *) %t A196755 t = x /. FindRoot[1/x == 2 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100] %t A196755 RealDigits[t] (* A196624 *) %t A196755 t = x /. FindRoot[1/x == 3 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100] %t A196755 RealDigits[t] (* A196754 *) %t A196755 t = x /. FindRoot[1/x == 4 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100] %t A196755 RealDigits[t] (* A196755 *) %t A196755 t = x /. FindRoot[1/x == 5 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100] %t A196755 RealDigits[t] (* A196756 *) %t A196755 t = x /. FindRoot[1/x == 6 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100] %t A196755 RealDigits[t] (* A196757 *) %Y A196755 Cf. A196758. %K A196755 nonn,cons %O A196755 0,1 %A A196755 _Clark Kimberling_, Oct 06 2011