This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A196756 #7 Feb 11 2025 13:34:10 %S A196756 4,5,5,0,5,2,6,3,6,7,9,4,1,5,1,9,9,2,0,4,5,3,9,7,9,6,5,1,4,2,0,4,0,6, %T A196756 6,9,8,7,1,8,1,4,3,7,0,7,3,0,3,9,9,0,3,9,0,9,8,4,7,9,4,4,1,2,2,6,4,4, %U A196756 4,3,8,2,4,4,2,6,3,8,2,6,9,5,9,2,0,9,2,1,5,3,4,5,9,4,5,0,9,2,1,7 %N A196756 Decimal expansion of the least x>0 satisfying 1=5x*sin(x). %H A196756 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A196756 0.45505263679415199204539796514204066987181437073039903... %t A196756 Plot[{1/x, Sin[x], 2 Sin[x], 3*Sin[x], 4 Sin[x]}, {x, 0, 2 Pi}] %t A196756 t = x /. FindRoot[1/x == Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100] %t A196756 RealDigits[t] (* A133866 *) %t A196756 t = x /. FindRoot[1/x == 2 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100] %t A196756 RealDigits[t] (* A196624 *) %t A196756 t = x /. FindRoot[1/x == 3 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100] %t A196756 RealDigits[t] (* A196754 *) %t A196756 t = x /. FindRoot[1/x == 4 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100] %t A196756 RealDigits[t] (* A196755 *) %t A196756 t = x /. FindRoot[1/x == 5 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100] %t A196756 RealDigits[t] (* A196756 *) %t A196756 t = x /. FindRoot[1/x == 6 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100] %t A196756 RealDigits[t] (* A196757 *) %Y A196756 Cf. A196758. %K A196756 nonn,cons %O A196756 0,1 %A A196756 _Clark Kimberling_, Oct 06 2011