This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A196757 #9 Feb 11 2025 13:34:11 %S A196757 4,1,4,1,5,9,9,3,3,2,3,1,8,7,2,9,7,5,5,1,3,7,5,7,8,9,6,3,2,0,4,4,2,1, %T A196757 1,2,3,0,9,6,7,5,1,8,1,1,8,3,7,6,6,2,0,1,2,3,4,3,7,5,4,9,7,4,3,7,0,1, %U A196757 9,0,4,2,9,3,4,9,2,2,5,1,8,8,1,4,8,1,6,1,6,6,4,3,9,2,8,2,8,1,2,2,9 %N A196757 Decimal expansion of the least x>0 satisfying 1=6x*sin(x). %H A196757 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A196757 0.4141599332318729755137578963204421123096... %t A196757 Plot[{1/x, Sin[x], 2 Sin[x], 3*Sin[x], 4 Sin[x]}, {x, 0, 2 Pi}] %t A196757 t = x /. FindRoot[1/x == Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100] %t A196757 RealDigits[t] (* A133866 *) %t A196757 t = x /. FindRoot[1/x == 2 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100] %t A196757 RealDigits[t] (* A196624 *) %t A196757 t = x /. FindRoot[1/x == 3 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100] %t A196757 RealDigits[t] (* A196754 *) %t A196757 t = x /. FindRoot[1/x == 4 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100] %t A196757 RealDigits[t] (* A196755 *) %t A196757 t = x /. FindRoot[1/x == 5 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100] %t A196757 RealDigits[t] (* A196756 *) %t A196757 t = x /. FindRoot[1/x == 6 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100] %t A196757 RealDigits[t] (* A196757 *) %Y A196757 Cf. A196758. %K A196757 nonn,cons %O A196757 0,1 %A A196757 _Clark Kimberling_, Oct 06 2011