cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A196760 Decimal expansion of the least x>0 satisfying 2=x*sin(x).

This page as a plain text file.
%I A196760 #7 Aug 09 2021 14:05:48
%S A196760 6,5,9,1,4,6,7,8,0,7,2,7,6,4,5,0,4,0,8,6,8,9,1,9,3,5,3,6,4,5,6,4,7,7,
%T A196760 3,6,6,6,0,6,9,5,3,6,2,0,3,2,8,7,0,8,9,1,3,0,8,6,4,5,7,2,7,8,2,4,9,4,
%U A196760 9,9,7,0,6,6,6,9,6,3,3,5,0,8,4,7,8,9,6,7,6,7,2,2,6,7,5,4,6,3,5,0,6
%N A196760 Decimal expansion of the least x>0 satisfying 2=x*sin(x).
%e A196760 x=6.591467807276450408689193536456477366606...
%t A196760 Plot[{1/x, 2/x, 3/x, 4/x, Sin[x]}, {x, 0, 4 Pi}]
%t A196760 t = x /. FindRoot[1/x == Sin[x], {x, 1, 1.2}, WorkingPrecision -> 100]
%t A196760 RealDigits[t]  (* A133866 *)
%t A196760 t = x /. FindRoot[2/x == Sin[x], {x, 6, 7}, WorkingPrecision -> 100]
%t A196760 RealDigits[t]   (* A196760 *)
%t A196760 t = x /. FindRoot[3/x == Sin[x], {x, 6, 7}, WorkingPrecision -> 100]
%t A196760 RealDigits[t]   (* A196761 *)
%t A196760 t = x /. FindRoot[4/x == Sin[x], {x, 6, 7}, WorkingPrecision -> 100]
%t A196760 RealDigits[t]   (* A196762 *)
%t A196760 t = x /. FindRoot[5/x == Sin[x], {x, 6, 7}, WorkingPrecision -> 100]
%t A196760 RealDigits[t]   (* A196763 *)
%t A196760 t = x /. FindRoot[6/x == Sin[x], {x, 6, 7}, WorkingPrecision -> 100]
%t A196760 RealDigits[t]   (* A196764 *)
%Y A196760 Cf. A196765.
%K A196760 nonn,cons
%O A196760 1,1
%A A196760 _Clark Kimberling_, Oct 06 2011