This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A196760 #7 Aug 09 2021 14:05:48 %S A196760 6,5,9,1,4,6,7,8,0,7,2,7,6,4,5,0,4,0,8,6,8,9,1,9,3,5,3,6,4,5,6,4,7,7, %T A196760 3,6,6,6,0,6,9,5,3,6,2,0,3,2,8,7,0,8,9,1,3,0,8,6,4,5,7,2,7,8,2,4,9,4, %U A196760 9,9,7,0,6,6,6,9,6,3,3,5,0,8,4,7,8,9,6,7,6,7,2,2,6,7,5,4,6,3,5,0,6 %N A196760 Decimal expansion of the least x>0 satisfying 2=x*sin(x). %e A196760 x=6.591467807276450408689193536456477366606... %t A196760 Plot[{1/x, 2/x, 3/x, 4/x, Sin[x]}, {x, 0, 4 Pi}] %t A196760 t = x /. FindRoot[1/x == Sin[x], {x, 1, 1.2}, WorkingPrecision -> 100] %t A196760 RealDigits[t] (* A133866 *) %t A196760 t = x /. FindRoot[2/x == Sin[x], {x, 6, 7}, WorkingPrecision -> 100] %t A196760 RealDigits[t] (* A196760 *) %t A196760 t = x /. FindRoot[3/x == Sin[x], {x, 6, 7}, WorkingPrecision -> 100] %t A196760 RealDigits[t] (* A196761 *) %t A196760 t = x /. FindRoot[4/x == Sin[x], {x, 6, 7}, WorkingPrecision -> 100] %t A196760 RealDigits[t] (* A196762 *) %t A196760 t = x /. FindRoot[5/x == Sin[x], {x, 6, 7}, WorkingPrecision -> 100] %t A196760 RealDigits[t] (* A196763 *) %t A196760 t = x /. FindRoot[6/x == Sin[x], {x, 6, 7}, WorkingPrecision -> 100] %t A196760 RealDigits[t] (* A196764 *) %Y A196760 Cf. A196765. %K A196760 nonn,cons %O A196760 1,1 %A A196760 _Clark Kimberling_, Oct 06 2011