This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A196761 #7 Aug 09 2021 14:06:09 %S A196761 6,7,4,4,1,6,8,3,5,3,2,5,9,1,4,8,5,5,5,8,5,5,2,8,1,1,7,3,0,1,5,3,2,5, %T A196761 9,4,4,0,2,6,8,7,9,9,7,1,4,1,3,4,0,7,9,1,2,9,6,2,3,6,7,5,1,2,6,6,8,7, %U A196761 8,6,9,0,0,1,9,5,5,7,3,4,1,7,3,9,0,9,4,6,9,1,2,7,1,6,1,6,5,4,7,8,9,6 %N A196761 Decimal expansion of the least x>0 satisfying 3=x*sin(x). %e A196761 x=6.7441683532591485558552811730153259440268799... %t A196761 Plot[{1/x, 2/x, 3/x, 4/x, Sin[x]}, {x, 0, 4 Pi}] %t A196761 t = x /. FindRoot[1/x == Sin[x], {x, 1, 1.2}, WorkingPrecision -> 100] %t A196761 RealDigits[t] (* A133866 *) %t A196761 t = x /. FindRoot[2/x == Sin[x], {x, 6, 7}, WorkingPrecision -> 100] %t A196761 RealDigits[t] (* A196760 *) %t A196761 t = x /. FindRoot[3/x == Sin[x], {x, 6, 7}, WorkingPrecision -> 100] %t A196761 RealDigits[t] (* A196761 *) %t A196761 t = x /. FindRoot[4/x == Sin[x], {x, 6, 7}, WorkingPrecision -> 100] %t A196761 RealDigits[t] (* A196762 *) %t A196761 t = x /. FindRoot[5/x == Sin[x], {x, 6, 7}, WorkingPrecision -> 100] %t A196761 RealDigits[t] (* A196763 *) %t A196761 t = x /. FindRoot[6/x == Sin[x], {x, 6, 7}, WorkingPrecision -> 100] %t A196761 RealDigits[t] (* A196764 *) %Y A196761 Cf. A196765. %K A196761 nonn,cons %O A196761 1,1 %A A196761 _Clark Kimberling_, Oct 06 2011