This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A196763 #5 Mar 30 2012 18:57:50 %S A196763 7,0,6,8,8,9,1,4,0,3,3,9,5,0,6,6,8,0,0,6,8,7,5,9,9,5,6,1,9,1,6,7,6,2, %T A196763 0,4,2,7,1,5,0,4,5,1,0,1,7,0,0,5,9,5,1,7,8,7,8,0,8,5,5,2,2,9,2,2,7,5, %U A196763 8,0,2,5,6,0,3,5,9,4,4,1,4,9,2,2,0,8,7,2,9,7,6,5,7,9,7,9,2,8,1,6 %N A196763 Decimal expansion of the least x>0 satisfying 5=x*sin(x). %e A196763 x=7.068891403395066800687599561916762042715045101700... %t A196763 Plot[{1/x, 2/x, 3/x, 4/x, Sin[x]}, {x, 0, 4 Pi}] %t A196763 t = x /. FindRoot[1/x == Sin[x], {x, 1, 1.2}, WorkingPrecision -> 100] %t A196763 RealDigits[t] (* A133866 *) %t A196763 t = x /. FindRoot[2/x == Sin[x], {x, 6, 7}, WorkingPrecision -> 100] %t A196763 RealDigits[t] (* A196760 *) %t A196763 t = x /. FindRoot[3/x == Sin[x], {x, 6, 7}, WorkingPrecision -> 100] %t A196763 RealDigits[t] (* A196761 *) %t A196763 t = x /. FindRoot[4/x == Sin[x], {x, 6, 7}, WorkingPrecision -> 100] %t A196763 RealDigits[t] (* A196762 *) %t A196763 t = x /. FindRoot[5/x == Sin[x], {x, 6, 7}, WorkingPrecision -> 100] %t A196763 RealDigits[t] (* A196763 *) %t A196763 t = x /. FindRoot[6/x == Sin[x], {x, 6, 7}, WorkingPrecision -> 100] %t A196763 RealDigits[t] (* A196764 *) %Y A196763 Cf. A196765. %K A196763 nonn,cons %O A196763 1,1 %A A196763 _Clark Kimberling_, Oct 06 2011