This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A196764 #5 Mar 30 2012 18:57:50 %S A196764 7,2,5,6,6,3,2,9,3,6,6,2,8,3,9,9,8,6,4,3,1,3,5,5,6,1,0,0,8,6,6,9,5,7, %T A196764 1,2,9,1,9,4,7,1,7,0,0,4,8,3,9,7,4,2,5,3,9,6,5,8,2,0,2,5,0,8,7,7,0,8, %U A196764 8,9,5,7,4,1,2,5,2,7,0,7,3,9,7,1,4,4,7,1,1,7,3,4,7,2,2,2,6,3,6,1 %N A196764 Decimal expansion of the least x>0 satisfying 6=x*sin(x). %e A196764 x=7.25663293662839986431355610086695712919471700... %t A196764 Plot[{1/x, 2/x, 3/x, 4/x, Sin[x]}, {x, 0, 4 Pi}] %t A196764 t = x /. FindRoot[1/x == Sin[x], {x, 1, 1.2}, WorkingPrecision -> 100] %t A196764 RealDigits[t] (* A133866 *) %t A196764 t = x /. FindRoot[2/x == Sin[x], {x, 6, 7}, WorkingPrecision -> 100] %t A196764 RealDigits[t] (* A196760 *) %t A196764 t = x /. FindRoot[3/x == Sin[x], {x, 6, 7}, WorkingPrecision -> 100] %t A196764 RealDigits[t] (* A196761 *) %t A196764 t = x /. FindRoot[4/x == Sin[x], {x, 6, 7}, WorkingPrecision -> 100] %t A196764 RealDigits[t] (* A196762 *) %t A196764 t = x /. FindRoot[5/x == Sin[x], {x, 6, 7}, WorkingPrecision -> 100] %t A196764 RealDigits[t] (* A196763 *) %t A196764 t = x /. FindRoot[6/x == Sin[x], {x, 6, 7}, WorkingPrecision -> 100] %t A196764 RealDigits[t] (* A196764 *) %Y A196764 Cf. A196765. %K A196764 nonn,cons %O A196764 1,1 %A A196764 _Clark Kimberling_, Oct 06 2011