This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A196769 #9 Apr 10 2021 02:01:12 %S A196769 1,5,0,9,5,0,6,8,3,2,2,2,4,4,7,2,8,8,5,5,6,5,3,2,6,2,2,0,4,3,7,7,6,8, %T A196769 5,0,5,5,3,2,8,8,0,8,1,7,0,6,6,7,1,9,6,4,6,6,6,7,2,3,7,1,0,6,1,3,4,3, %U A196769 0,5,4,2,1,6,9,1,4,0,3,4,8,1,5,9,4,3,3,3,4,5,5,5,4,1,1,9,2,2,0,1 %N A196769 Decimal expansion of the least x > 0 satisfying 1 = x*sin(x - Pi/4). %e A196769 x=1.5095068322244728855653262204377685055328808170667196... %t A196769 Plot[{1/x, Sin[x], Sin[x - Pi/2], Sin[x - Pi/3], Sin[x - Pi/4]}, {x, %t A196769 0, 2 Pi}] %t A196769 t = x /. FindRoot[1/x == Sin[x], {x, 1, 1.2}, WorkingPrecision -> 100] %t A196769 RealDigits[t] (* A133866 *) %t A196769 t = x /. FindRoot[1/x == Sin[x - Pi/2], {x, 1, 2}, WorkingPrecision -> 100] %t A196769 RealDigits[t] (* A196767 *) %t A196769 t = x /. FindRoot[1/x == Sin[x - Pi/3], {x, 1, 2}, WorkingPrecision -> 100] %t A196769 RealDigits[t] (* A196768 *) %t A196769 t = x /. FindRoot[1/x == Sin[x - Pi/4], {x, 1, 2}, WorkingPrecision -> 100] %t A196769 RealDigits[t] (* A196769 *) %t A196769 t = x /. FindRoot[1/x == Sin[x - Pi/5], {x, 1, 2}, WorkingPrecision -> 100] %t A196769 RealDigits[t] (* A196770 *) %t A196769 t = x /. FindRoot[1/x == Sin[x - Pi/6], {x, 1, 2}, WorkingPrecision -> 100] %t A196769 RealDigits[t] (* A196771 *) %Y A196769 Cf. A196772. %K A196769 nonn,cons %O A196769 1,2 %A A196769 _Clark Kimberling_, Oct 06 2011