A196770 Decimal expansion of the least x > 0 satisfying 1 = x*sin(x - Pi/5).
1, 4, 1, 3, 9, 2, 2, 5, 4, 0, 9, 0, 9, 2, 9, 6, 7, 4, 0, 4, 2, 4, 4, 5, 3, 3, 3, 3, 0, 3, 6, 0, 3, 3, 1, 1, 3, 0, 4, 0, 9, 0, 1, 9, 1, 5, 7, 1, 0, 0, 0, 8, 3, 1, 5, 0, 5, 5, 0, 3, 1, 6, 0, 0, 5, 8, 0, 6, 3, 7, 8, 3, 6, 7, 5, 4, 0, 2, 7, 3, 0, 1, 2, 4, 9, 0, 2, 5, 7, 2, 8, 1, 9, 1, 2, 2, 6, 1, 8, 7
Offset: 1
Examples
x=1.41392254090929674042445333303603311304090191571000...
Crossrefs
Cf. A196772.
Programs
-
Mathematica
Plot[{1/x, Sin[x], Sin[x - Pi/2], Sin[x - Pi/3], Sin[x - Pi/4]}, {x, 0, 2 Pi}] t = x /. FindRoot[1/x == Sin[x], {x, 1, 1.2}, WorkingPrecision -> 100] RealDigits[t] (* A133866 *) t = x /. FindRoot[1/x == Sin[x - Pi/2], {x, 1, 2}, WorkingPrecision -> 100] RealDigits[t] (* A196767 *) t = x /. FindRoot[1/x == Sin[x - Pi/3], {x, 1, 2}, WorkingPrecision -> 100] RealDigits[t] (* A196768 *) t = x /. FindRoot[1/x == Sin[x - Pi/4], {x, 1, 2}, WorkingPrecision -> 100] RealDigits[t] (* A196769 *) t = x /. FindRoot[1/x == Sin[x - Pi/5], {x, 1, 2}, WorkingPrecision -> 100] RealDigits[t] (* A196770 *) t = x /. FindRoot[1/x == Sin[x - Pi/6], {x, 1, 2}, WorkingPrecision -> 100] RealDigits[t] (* A196771 *)