A196772 Decimal expansion of the number c for which the curve y=1/x is tangent to the curve y=sin(x-c), and 0 < x < 2*Pi; c = Pi - sqrt(r) - arccos(r-1), where r=(1+sqrt(5))/2 (the golden ratio).
9, 6, 5, 0, 1, 6, 1, 0, 9, 7, 7, 3, 3, 4, 2, 9, 1, 0, 0, 8, 2, 9, 0, 4, 1, 2, 5, 8, 8, 0, 0, 5, 2, 6, 7, 1, 0, 5, 0, 4, 6, 6, 7, 9, 6, 5, 7, 3, 4, 0, 4, 5, 0, 4, 7, 0, 2, 3, 0, 5, 7, 5, 6, 4, 1, 8, 5, 8, 9, 6, 1, 6, 9, 8, 6, 0, 9, 5, 7, 6, 9, 1, 9, 1, 5, 4, 0, 0, 2, 8, 8, 5, 2, 1, 7, 9, 4, 1, 0, 7
Offset: 0
Examples
c=0.965016109773342910082904125880052671050...
Programs
-
Mathematica
Plot[{Sin[x + .97], 1/x}, {x, 0, Pi}] r = GoldenRatio; x = Sqrt[r]; c = N[Pi - x - ArcCos[r - 1], 100] RealDigits[c] (* A196772 *) slope = N[-1/x^2, 100] RealDigits[slope] (* 1-r *)