cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A196773 Decimal expansion of the least number x>0 satisfying -1=(x^2)*cos(x).

This page as a plain text file.
%I A196773 #7 Dec 14 2023 17:53:21
%S A196773 1,8,6,3,0,4,5,3,0,8,2,4,8,6,9,9,2,2,4,0,6,9,7,9,3,2,0,4,6,9,3,6,3,5,
%T A196773 4,1,8,3,3,4,4,2,1,0,0,0,4,6,3,5,7,8,9,5,6,7,1,4,4,9,5,9,1,8,9,2,6,4,
%U A196773 5,2,7,4,8,9,3,9,5,0,4,7,6,3,9,3,5,3,0,7,4,8,8,7,1,0,0,8,9,1,6,7
%N A196773 Decimal expansion of the least number x>0 satisfying -1=(x^2)*cos(x).
%e A196773 x=1.863045308248699224069793204693635418...
%t A196773 Plot[{1/x + .42, Sin[x]}, {x, 0, 2 Pi}]
%t A196773 t = x /. FindRoot[-1 == (x^2) Cos[x], {x, 1.5, 2.5}, WorkingPrecision -> 100]
%t A196773 RealDigits[t]    (* A196773 *)
%t A196773 c = N[-1/t + Sin[t], 100]
%t A196773 RealDigits[c]    (* A196774 *)
%t A196773 slope = N[-1/t^2, 100]
%t A196773 RealDigits[slope](* A196775 *)
%t A196773 RealDigits[x/.FindRoot[x^2 Cos[x]+1,{x,1/4},WorkingPrecision->120],10,120][[1]] (* _Harvey P. Dale_, Dec 14 2023 *)
%Y A196773 Cf. A196774.
%K A196773 nonn,cons
%O A196773 1,2
%A A196773 _Clark Kimberling_, Oct 06 2011