cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A196812 Number of ways to place 2 nonattacking nightriders on an n X n toroidal board.

Original entry on oeis.org

0, 2, 18, 72, 200, 378, 588, 1312, 2106, 3650, 4840, 7848, 10140, 14210, 20250, 25728, 32368, 42282, 51984, 67400, 80262, 97042, 116380, 141984, 167500, 195026, 228906, 266952, 306124, 358650, 403620, 463360, 524898, 592450, 671300, 754920, 837828, 936434
Offset: 1

Views

Author

Vaclav Kotesovec, Oct 06 2011

Keywords

Comments

A nightrider is a fairy chess piece that can move (proportionate to how a knight moves) in any direction.

Crossrefs

Programs

  • Mathematica
    Table[n^2/2*(21-22*n+n^2+16*Floor[n/5]+4*Floor[n/4]+8*Floor[n/3]+8*Floor[n/2]+8*Floor[(1+n)/5]+4*Floor[(1+n)/4]+4*Floor[(1+n)/3]+8*Floor[(2+n)/5]+8*Floor[(3+n)/5]),{n,1,100}]

Formula

G.f. (Vaclav Kotesovec, Apr 18 2010): -(2*x^2*(2*x^29 + 25*x^28 + 151*x^27 + 620*x^26 + 1965*x^25 + 5094*x^24 + 11169*x^23 + 21370*x^22 + 36349*x^21 + 56009*x^20 + 78898*x^19 + 102778*x^18 + 124128*x^17 + 139254*x^16 + 144792*x^15 + 139276*x^14 + 123618*x^13 + 101232*x^12 + 76538*x^11 + 53680*x^10 + 35008*x^9 + 21359*x^8 + 12037*x^7 + 6226*x^6 + 2853*x^5 + 1122*x^4 + 351*x^3 + 82*x^2 + 13*x + 1))/((x-1)^5*(x+1)^3*(x^2+1)^3*(x^2+x+1)^3*(x^4+x^3+x^2+x+1)^3)
Recurrence: a(n) = a(n-32) + 4*a(n-31) + 10*a(n-30) + 17*a(n-29) + 20*a(n-28) + 11*a(n-27) - 15*a(n-26) - 54*a(n-25) - 90*a(n-24) - 99*a(n-23) - 63*a(n-22) + 18*a(n-21) + 116*a(n-20) + 188*a(n-19) + 194*a(n-18) + 123*a(n-17) - 123*a(n-15) - 194*a(n-14) - 188*a(n-13) - 116*a(n-12) - 18*a(n-11) + 63*a(n-10) + 99*a(n-9) + 90*a(n-8) + 54*a(n-7) + 15*a(n-6) - 11*a(n-5) - 20*a(n-4) - 17*a(n-3) - 10*a(n-2) - 4*a(n-1)
Explicit formula: a(n) = n^2/2*(119/15+2*(-1)^n-4*n+n^2+2*cos((n*Pi)/2) +16/5*cos((4*n*Pi)/5)+8/3*cos((4*n*Pi)/3)+16/5*cos((8*n*Pi)/5))