A196812 Number of ways to place 2 nonattacking nightriders on an n X n toroidal board.
0, 2, 18, 72, 200, 378, 588, 1312, 2106, 3650, 4840, 7848, 10140, 14210, 20250, 25728, 32368, 42282, 51984, 67400, 80262, 97042, 116380, 141984, 167500, 195026, 228906, 266952, 306124, 358650, 403620, 463360, 524898, 592450, 671300, 754920, 837828, 936434
Offset: 1
Keywords
Links
- V. Kotesovec, Non-attacking chess pieces, 4th edition p.195
Programs
-
Mathematica
Table[n^2/2*(21-22*n+n^2+16*Floor[n/5]+4*Floor[n/4]+8*Floor[n/3]+8*Floor[n/2]+8*Floor[(1+n)/5]+4*Floor[(1+n)/4]+4*Floor[(1+n)/3]+8*Floor[(2+n)/5]+8*Floor[(3+n)/5]),{n,1,100}]
Formula
G.f. (Vaclav Kotesovec, Apr 18 2010): -(2*x^2*(2*x^29 + 25*x^28 + 151*x^27 + 620*x^26 + 1965*x^25 + 5094*x^24 + 11169*x^23 + 21370*x^22 + 36349*x^21 + 56009*x^20 + 78898*x^19 + 102778*x^18 + 124128*x^17 + 139254*x^16 + 144792*x^15 + 139276*x^14 + 123618*x^13 + 101232*x^12 + 76538*x^11 + 53680*x^10 + 35008*x^9 + 21359*x^8 + 12037*x^7 + 6226*x^6 + 2853*x^5 + 1122*x^4 + 351*x^3 + 82*x^2 + 13*x + 1))/((x-1)^5*(x+1)^3*(x^2+1)^3*(x^2+x+1)^3*(x^4+x^3+x^2+x+1)^3)
Recurrence: a(n) = a(n-32) + 4*a(n-31) + 10*a(n-30) + 17*a(n-29) + 20*a(n-28) + 11*a(n-27) - 15*a(n-26) - 54*a(n-25) - 90*a(n-24) - 99*a(n-23) - 63*a(n-22) + 18*a(n-21) + 116*a(n-20) + 188*a(n-19) + 194*a(n-18) + 123*a(n-17) - 123*a(n-15) - 194*a(n-14) - 188*a(n-13) - 116*a(n-12) - 18*a(n-11) + 63*a(n-10) + 99*a(n-9) + 90*a(n-8) + 54*a(n-7) + 15*a(n-6) - 11*a(n-5) - 20*a(n-4) - 17*a(n-3) - 10*a(n-2) - 4*a(n-1)
Explicit formula: a(n) = n^2/2*(119/15+2*(-1)^n-4*n+n^2+2*cos((n*Pi)/2) +16/5*cos((4*n*Pi)/5)+8/3*cos((4*n*Pi)/3)+16/5*cos((8*n*Pi)/5))
Comments