This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A196818 #10 Feb 11 2025 13:54:04 %S A196818 1,4,6,4,6,1,1,4,7,9,7,0,1,4,2,5,0,0,5,0,1,4,6,4,8,0,4,8,0,1,0,0,2,5, %T A196818 9,9,7,8,1,8,0,8,4,8,1,3,1,0,9,6,2,6,9,6,0,3,7,9,0,7,1,1,0,1,7,5,5,7, %U A196818 2,5,3,9,2,4,2,6,1,6,4,8,4,7,8,7,8,4,3,0,1,6,9,7,9,9,2,0,1,0,2,6,8,5 %N A196818 Decimal expansion of the least x>0 satisfying 1/(1+x^2)=3*cos(x). %H A196818 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A196818 1.46461147970142500501464804801002599781808481310... %t A196818 Plot[{1/(1 + x^2), Cos[x], 2 Cos[x], 3 Cos[x], 4 Cos[x]}, {x, 0, 2}] %t A196818 t = x /. FindRoot[1 == (1 + x^2) Cos[x], {x, 1, 1.5}, WorkingPrecision -> 100] %t A196818 RealDigits[t] (* A196816 *) %t A196818 t = x /. FindRoot[1 == 2 (1 + x^2) Cos[x], {x, 1, 1.6}, %t A196818 WorkingPrecision -> 100] %t A196818 RealDigits[t] (* A196817 *) %t A196818 t = x /. FindRoot[1 == 3 (1 + x^2) Cos[x], {x, 1, 1.6}, %t A196818 WorkingPrecision -> 100] %t A196818 RealDigits[t] (* A196818 *) %t A196818 t = x /. FindRoot[1 == 4 (1 + x^2) Cos[x], {x, 1, 1.6}, %t A196818 WorkingPrecision -> 100] %t A196818 RealDigits[t] (* A196819 *) %t A196818 t = x /. FindRoot[1 == 5 (1 + x^2) Cos[x], {x, 1, 1.6}, %t A196818 WorkingPrecision -> 100] %t A196818 RealDigits[t] (* A196820 *) %t A196818 t = x /. FindRoot[1 == 6 (1 + x^2) Cos[x], {x, 1, 1.6}, %t A196818 WorkingPrecision -> 100] %t A196818 RealDigits[t] (* A196821 *) %Y A196818 Cf. A196914. %K A196818 nonn,cons %O A196818 1,2 %A A196818 _Clark Kimberling_, Oct 06 2011