This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A196820 #8 Feb 11 2025 13:54:24 %S A196820 1,5,0,9,7,7,1,9,0,0,4,7,0,7,2,6,8,8,5,3,5,5,4,9,3,7,5,3,5,0,0,9,8,6, %T A196820 5,9,9,4,4,8,6,3,7,7,2,7,5,6,3,8,3,7,3,0,5,0,6,6,8,0,5,9,3,4,3,1,5,3, %U A196820 7,5,3,9,5,9,0,0,9,7,0,3,7,1,1,0,9,2,9,0,8,1,2,9,7,3,8,7,9,0,2,1 %N A196820 Decimal expansion of the least x>0 satisfying 1/(1+x^2)=5*cos(x). %H A196820 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A196820 1.50977190047072688535549375350098659944863772756... %t A196820 Plot[{1/(1 + x^2), Cos[x], 2 Cos[x], 3 Cos[x], 4 Cos[x]}, {x, 0, 2}] %t A196820 t = x /. FindRoot[1 == (1 + x^2) Cos[x], {x, 1, 1.5}, WorkingPrecision -> 100] %t A196820 RealDigits[t] (* A196816 *) %t A196820 t = x /. FindRoot[1 == 2 (1 + x^2) Cos[x], {x, 1, 1.6}, %t A196820 WorkingPrecision -> 100] %t A196820 RealDigits[t] (* A196817 *) %t A196820 t = x /. FindRoot[1 == 3 (1 + x^2) Cos[x], {x, 1, 1.6}, %t A196820 WorkingPrecision -> 100] %t A196820 RealDigits[t] (* A196818 *) %t A196820 t = x /. FindRoot[1 == 4 (1 + x^2) Cos[x], {x, 1, 1.6}, %t A196820 WorkingPrecision -> 100] %t A196820 RealDigits[t] (* A196819 *) %t A196820 t = x /. FindRoot[1 == 5 (1 + x^2) Cos[x], {x, 1, 1.6}, %t A196820 WorkingPrecision -> 100] %t A196820 RealDigits[t] (* A196820 *) %t A196820 t = x /. FindRoot[1 == 6 (1 + x^2) Cos[x], {x, 1, 1.6}, %t A196820 WorkingPrecision -> 100] %t A196820 RealDigits[t] (* A196821 *) %Y A196820 Cf. A196914. %K A196820 nonn,cons %O A196820 1,2 %A A196820 _Clark Kimberling_, Oct 06 2011