This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A196825 #17 Feb 22 2025 19:19:21 %S A196825 7,1,9,4,2,1,2,9,6,3,2,7,4,1,0,3,1,5,7,1,6,9,2,2,9,7,0,0,3,7,3,3,2,0, %T A196825 4,9,0,8,5,1,0,1,0,6,8,3,9,1,7,9,8,9,7,8,5,7,1,0,4,1,5,7,4,3,2,1,2,3, %U A196825 5,3,5,3,4,5,8,4,2,0,5,5,0,1,0,8,1,9,4,4,8,3,4,5,2,2,0,3,6,2,2,7 %N A196825 Decimal expansion of the least x > 0 satisfying 1/(1 + x^2) = sin(x). %H A196825 G. C. Greubel, <a href="/A196825/b196825.txt">Table of n, a(n) for n = 0..10000</a> %H A196825 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A196825 0.7194212963274103157169229700373320490851010... %t A196825 Plot[{1/(1 + x^2), Sin[x], 2 Sin[x], 3 Sin[x], 4 Sin[x]}, {x, 0, 2}] %t A196825 t = x /. FindRoot[1 == (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100] %t A196825 RealDigits[t] (* A196825 *) %t A196825 t = x /. FindRoot[1 == 2 (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100] %t A196825 RealDigits[t] (* A196826 *) %t A196825 t = x /. FindRoot[1 == 3 (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100] %t A196825 RealDigits[t] (* A196827 *) %t A196825 t = x /. FindRoot[1 == 4 (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100] %t A196825 RealDigits[t] (* A196828 *) %t A196825 t = x /. FindRoot[1 == 5 (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100] %t A196825 RealDigits[t] (* A196829 *) %t A196825 t = x /. FindRoot[1 == 6 (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100] %t A196825 RealDigits[t] (* A196830 *) %o A196825 (PARI) a=1; c=1; solve(x=0.5, 1, a*x^2 + c - 1/sin(x)) \\ _G. C. Greubel_, Aug 21 2018 %Y A196825 Cf. A196832. %K A196825 nonn,cons %O A196825 0,1 %A A196825 _Clark Kimberling_, Oct 07 2011