This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A196826 #9 Feb 11 2025 13:55:23 %S A196826 4,3,4,2,0,2,5,4,9,9,9,8,1,9,6,3,8,6,8,1,3,5,2,4,4,2,1,9,6,6,6,8,4,0, %T A196826 1,9,8,3,9,6,2,3,8,0,7,6,4,7,6,7,2,5,5,4,6,4,7,2,0,6,3,4,8,5,3,3,2,3, %U A196826 7,1,0,7,3,3,7,0,0,8,1,7,2,0,8,8,0,7,6,7,5,2,2,1,5,6,0,7,5,5,5,4 %N A196826 Decimal expansion of the least x>0 satisfying 1/(1+x^2)=2*sin(x). %H A196826 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A196826 0.43420254999819638681352442196668401983962380... %t A196826 Plot[{1/(1 + x^2), Sin[x], 2 Sin[x], 3 Sin[x], 4 Sin[x]}, {x, 0, 2}] %t A196826 t = x /. FindRoot[1 == (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100] %t A196826 RealDigits[t] (* A196825 *) %t A196826 t = x /. FindRoot[1 == 2 (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100] %t A196826 RealDigits[t] (* A196826 *) %t A196826 t = x /. FindRoot[1 == 3 (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100] %t A196826 RealDigits[t] (* A196827 *) %t A196826 t = x /. FindRoot[1 == 4 (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100] %t A196826 RealDigits[t] (* A196828 *) %t A196826 t = x /. FindRoot[1 == 5 (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100] %t A196826 RealDigits[t] (* A196829 *) %t A196826 t = x /. FindRoot[1 == 6 (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100] %t A196826 RealDigits[t] (* A196830 *) %Y A196826 Cf. A196832. %K A196826 nonn,cons %O A196826 0,1 %A A196826 _Clark Kimberling_, Oct 07 2011