This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A196828 #7 Feb 11 2025 13:55:19 %S A196828 2,3,8,7,7,7,6,5,9,4,4,5,9,0,4,8,5,2,5,6,4,7,2,9,0,3,0,9,5,4,6,1,3,7, %T A196828 4,7,6,3,8,1,5,3,9,8,9,3,9,2,6,5,3,6,7,9,7,4,7,1,1,8,5,8,5,8,5,8,4,4, %U A196828 8,3,5,3,5,1,1,3,2,5,0,9,1,9,6,5,3,5,9,0,7,7,4,8,2,0,9,4,5,2,0,4 %N A196828 Decimal expansion of the least x>0 satisfying 1/(1+x^2)=4*sin(x). %H A196828 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A196828 0.238777659445904852564729030954613747638153989... %t A196828 Plot[{1/(1 + x^2), Sin[x], 2 Sin[x], 3 Sin[x], 4 Sin[x]}, {x, 0, 2}] %t A196828 t = x /. FindRoot[1 == (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100] %t A196828 RealDigits[t] (* A196825 *) %t A196828 t = x /. FindRoot[1 == 2 (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100] %t A196828 RealDigits[t] (* A196826 *) %t A196828 t = x /. FindRoot[1 == 3 (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100] %t A196828 RealDigits[t] (* A196827 *) %t A196828 t = x /. FindRoot[1 == 4 (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100] %t A196828 RealDigits[t] (* A196828 *) %t A196828 t = x /. FindRoot[1 == 5 (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100] %t A196828 RealDigits[t] (* A196829 *) %t A196828 t = x /. FindRoot[1 == 6 (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100] %t A196828 RealDigits[t] (* A196830 *) %Y A196828 Cf. A196832. %K A196828 nonn,cons %O A196828 0,1 %A A196828 _Clark Kimberling_, Oct 07 2011