This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A196829 #9 Feb 11 2025 13:55:15 %S A196829 1,9,3,9,6,2,4,3,0,6,8,1,0,0,6,7,1,6,6,3,0,0,8,0,4,7,1,7,7,3,9,5,7,4, %T A196829 8,6,5,5,4,8,8,5,3,9,8,6,3,7,7,5,3,2,1,2,5,8,2,5,8,6,8,2,2,0,1,7,3,6, %U A196829 1,1,6,2,9,7,4,5,9,2,2,6,2,3,1,8,8,6,5,2,8,0,9,3,1,6,2,0,6,3,2,5 %N A196829 Decimal expansion of the least x>0 satisfying 1/(1+x^2)=5*sin(x). %H A196829 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A196829 0.1939624306810067166300804717739574865548853986... %t A196829 Plot[{1/(1 + x^2), Sin[x], 2 Sin[x], 3 Sin[x], 4 Sin[x]}, {x, 0, 2}] %t A196829 t = x /. FindRoot[1 == (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100] %t A196829 RealDigits[t] (* A196825 *) %t A196829 t = x /. FindRoot[1 == 2 (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100] %t A196829 RealDigits[t] (* A196826 *) %t A196829 t = x /. FindRoot[1 == 3 (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100] %t A196829 RealDigits[t] (* A196827 *) %t A196829 t = x /. FindRoot[1 == 4 (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100] %t A196829 RealDigits[t] (* A196828 *) %t A196829 t = x /. FindRoot[1 == 5 (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100] %t A196829 RealDigits[t] (* A196829 *) %t A196829 t = x /. FindRoot[1 == 6 (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100] %t A196829 RealDigits[t] (* A196830 *) %Y A196829 Cf. A196832. %K A196829 nonn,cons %O A196829 0,2 %A A196829 _Clark Kimberling_, Oct 07 2011 %E A196829 Offset corrected by _Georg Fischer_, Aug 10 2021