This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A196830 #7 Feb 11 2025 13:55:17 %S A196830 1,6,3,0,7,1,2,1,1,9,9,5,5,0,6,9,1,8,9,1,1,7,2,0,2,5,2,1,4,9,6,2,3,5, %T A196830 8,2,3,1,3,3,1,8,8,7,4,6,4,0,3,0,3,5,5,0,2,4,6,3,2,9,1,5,0,0,1,9,1,5, %U A196830 2,4,4,8,6,3,8,6,8,0,0,7,4,4,7,8,8,4,0,7,7,1,3,9,0,5,9,1,0,9,8,4 %N A196830 Decimal expansion of the least x>0 satisfying 1/(1+x^2)=6*sin(x). %H A196830 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A196830 0.16307121199550691891172025214962358231331887464030355... %t A196830 Plot[{1/(1 + x^2), Sin[x], 2 Sin[x], 3 Sin[x], 4 Sin[x]}, {x, 0, 2}] %t A196830 t = x /. FindRoot[1 == (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100] %t A196830 RealDigits[t] (* A196825 *) %t A196830 t = x /. FindRoot[1 == 2 (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100] %t A196830 RealDigits[t] (* A196826 *) %t A196830 t = x /. FindRoot[1 == 3 (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100] %t A196830 RealDigits[t] (* A196827 *) %t A196830 t = x /. FindRoot[1 == 4 (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100] %t A196830 RealDigits[t] (* A196828 *) %t A196830 t = x /. FindRoot[1 == 5 (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100] %t A196830 RealDigits[t] (* A196829 *) %t A196830 t = x /. FindRoot[1 == 6 (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100] %t A196830 RealDigits[t] (* A196830 *) %Y A196830 Cf. A196832. %K A196830 nonn,cons %O A196830 0,2 %A A196830 _Clark Kimberling_, Oct 07 2011