cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A196837 Coefficient table of numerator polynomials of o.g.f.s for partial sums of powers of positive integers.

This page as a plain text file.
%I A196837 #56 Oct 24 2024 14:42:04
%S A196837 1,2,-3,3,-12,11,4,-30,70,-50,5,-60,255,-450,274,6,-105,700,-2205,
%T A196837 3248,-1764,7,-168,1610,-7840,20307,-26264,13068,8,-252,3276,-22680,
%U A196837 89796,-201852,236248,-109584,9,-360,6090,-56700,316365,-1077300,2171040,-2345400,1026576,10,-495,10560,-127050,946638,-4510275,13667720,-25228500,25507152,-10628640
%N A196837 Coefficient table of numerator polynomials of o.g.f.s for partial sums of powers of positive integers.
%C A196837 The k-th power of the positive integers has partial sums Sum_{j=1..n} j^k given as column number n >= 1, in the array A103438 (not in the triangle; see the example array given there; note that 0^0 has been set to 0 there).
%C A196837 The o.g.f. of column number n >= 1 of the array A103438 is obtained via Laplace transformation from the e.g.f. which is given there as
%C A196837   exp(x)*(exp(n*x)-1)/(exp(x)-1) = Sum_{j=1..n} exp(j*x)
%C A196837   (it is trivial that the sum is the e.g.f.).
%C A196837   The o.g.f. is, therefore, Sum_{j=1..n} 1/(1-j*x), which is rewritten as P(n,x)/Product_{j=1..n} (1-j*x). This defines the row polynomials P(n,x) of the present triangle. See the link for details.
%C A196837 This e.g.f. - o.g.f. connection proves some conjectures by _Simon Plouffe_. See the o.g.f. Maple programs under, e.g., A001551(n=4) and A001552 (n=5).
%C A196837 This triangle organizes the sum of powers of the first n positive integers in terms of the column no. n of the Stirling2 numbers A048993 (see the formula and example given below, as well as the link).
%C A196837 From _Wolfdieter Lang_, Oct 12 2011: (Start)
%C A196837 With the formulas given below one finds for n >= 1, k >= 0, Sum_{j=1..n} j^k =
%C A196837   Sum_{m=0..min(k,n-1)} ((n-m)*S1(n+1, n-m+1)*S2(k+n-m, n)),
%C A196837   with the Stirling numbers S1 from A048994 and S2 from A048993 (this formula I did not (yet) find in the literature). See the link for the proof.
%C A196837 For two other formulas expressing these sums of k-th powers of the first n positive integers in terms of the row no. k of Stirling2 numbers and binomials in n see the D. E. Knuth reference given under A093556, p. 285.
%C A196837   See also the given link below, eqs. (11) and (12). (End)
%H A196837 José L. Cereceda, <a href="https://arxiv.org/abs/2301.02141">A refinement of Lang's formula for the sum of powers of integers</a>, arXiv:2301.02141 [math.NT], 2023.
%H A196837 Wolfdieter Lang, <a href="/A196837/a196837.pdf">Proofs and first 15 row polynomials</a>, 2011.
%F A196837 a(n,m) = [x^m] P(n,x), m=0..n-1, with the row polynomials defined by
%F A196837   (Sum_{j=1..n} 1/(1-j*x))*Product_{j=1..n} (1-j*x) (see the comment given above).
%F A196837 Sum_{j=1..n} j^k = Sum_{m=0..n-1} a(n,m)*S2(k+n-m,n), n >= 1, k >= 0, with the Stirling2 triangle A048993.
%F A196837 From _Wolfdieter Lang_, Oct 12 2011: (Start)
%F A196837 The row polynomial P(n,x) is therefore
%F A196837 Sum_{j=1..n} (Product_{k=1..n omitting k=j} (1-k*x)), n >= 1. This leads to:
%F A196837 a(n,m) = (n-m)*S1(n+1, n+1-m), n-1 >= m >= 0, with the (signed) Stirling1 numbers A048994. For the proof see the link.
%F A196837 (End)
%F A196837 A similar polynomial occurs in the expansion of 1/(n+x)^2 as a series with factorials in the denominator: 1/(n+x)^2 = -Sum_{k>=1} n!/(n+k+1)! * P(k,1/x) x^(k-1). - _Matt Majic_, Nov 01 2019
%e A196837 n\m  0    1    2     3     4      5...
%e A196837 1    1
%e A196837 2    2   -3
%e A196837 3    3  -12   11
%e A196837 4    4  -30   70   -50
%e A196837 5    5  -60  255  -450   274
%e A196837 6    6 -105  700 -2205  3248  -1764
%e A196837 ...
%e A196837 n=4 (A001551=2*A196836): the row polynomial factorizes into 2*(2-5*x)*(1-5*x+5*x^2).
%e A196837 n=5: 1^k + 2^k + 3^k + 4^k + 5^k, k>=0, (A001552) has as e.g.f. Sum_{j=1..5} exp(j*x). The o.g.f. is
%e A196837   Sum_{j=1..5} 1/(1-j*x), and this is
%e A196837   (5 - 60*x + 255*x^2 - 450*x^3 + 274*x^4)/Product_{j=1..5} (1-j*x).
%e A196837 n=6 (A001553): the row polynomial factorizes into
%e A196837      (2 - 7*x)*(3 - 42*x + 203*x^2 - 392*x^3 + 252*x^4).
%e A196837 Sums of powers of the first n positive integers in terms of S2:
%e A196837 n=4: A001551(k) = 4*S2(k+4,4) - 30*S2(k+3,4) + 70*S2(k+2,4) - 50*S2(k+1,4), k >= 0. E.g., k=3: 4*350 - 30*65 + 70*10 - 50*1 = 100 = A001551(3).
%e A196837 From _Wolfdieter Lang_, Oct 12 2011: (Start)
%e A196837 Row polynomial for n=3: P(3,x) = (1-2*x)*(1-3*x) + (1-1*x)*(1-3*x) + (1-1*x)*(1-2*x) = 3 - 12*x + 11*x^2.
%e A196837 a(3,2) = +(sigma_2(2,3) + sigma_2(1,3) + sigma_2(1,2)) =
%e A196837   2*3 + 1*3 + 1*2 = 11 = +1*sigma_2(1,2,3) = +1*|S1(4,4-2)|.
%e A196837 S1,S2 formula for sums of powers with n=4, k=3:
%e A196837 A001551(3) = Sum_{j=1..n} j^3 = 1*4*350 - 3*10*65 + 2*35*10 - 1*50*1 = 100. (End)
%t A196837 a[n_, m_] := (n-m)*StirlingS1[n+1, n+1-m]; Flatten[ Table[ a[n, m], {n, 1, 10}, {m, 0, n-1}] ] (* _Jean-François Alcover_, Dec 02 2011, after _Wolfdieter Lang_ *)
%o A196837 (Python)
%o A196837 from itertools import count, islice
%o A196837 from sympy.functions.combinatorial.numbers import stirling
%o A196837 def A196837_T(n,m): return (n-m)*stirling(n+1,n+1-m,kind=1,signed=True)
%o A196837 def A196837_gen(): # generator of terms
%o A196837     return (A196837_T(n,m) for n in count(1) for m in range(n))
%o A196837 A196837_list = list(islice(A196837_gen(),40)) # _Chai Wah Wu_, Oct 24 2024
%Y A196837 Cf. A103438, A093556/A093557 (for sums of powers).
%K A196837 sign,easy,tabl
%O A196837 1,2
%A A196837 _Wolfdieter Lang_, Oct 10 2011