This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A196837 #56 Oct 24 2024 14:42:04 %S A196837 1,2,-3,3,-12,11,4,-30,70,-50,5,-60,255,-450,274,6,-105,700,-2205, %T A196837 3248,-1764,7,-168,1610,-7840,20307,-26264,13068,8,-252,3276,-22680, %U A196837 89796,-201852,236248,-109584,9,-360,6090,-56700,316365,-1077300,2171040,-2345400,1026576,10,-495,10560,-127050,946638,-4510275,13667720,-25228500,25507152,-10628640 %N A196837 Coefficient table of numerator polynomials of o.g.f.s for partial sums of powers of positive integers. %C A196837 The k-th power of the positive integers has partial sums Sum_{j=1..n} j^k given as column number n >= 1, in the array A103438 (not in the triangle; see the example array given there; note that 0^0 has been set to 0 there). %C A196837 The o.g.f. of column number n >= 1 of the array A103438 is obtained via Laplace transformation from the e.g.f. which is given there as %C A196837 exp(x)*(exp(n*x)-1)/(exp(x)-1) = Sum_{j=1..n} exp(j*x) %C A196837 (it is trivial that the sum is the e.g.f.). %C A196837 The o.g.f. is, therefore, Sum_{j=1..n} 1/(1-j*x), which is rewritten as P(n,x)/Product_{j=1..n} (1-j*x). This defines the row polynomials P(n,x) of the present triangle. See the link for details. %C A196837 This e.g.f. - o.g.f. connection proves some conjectures by _Simon Plouffe_. See the o.g.f. Maple programs under, e.g., A001551(n=4) and A001552 (n=5). %C A196837 This triangle organizes the sum of powers of the first n positive integers in terms of the column no. n of the Stirling2 numbers A048993 (see the formula and example given below, as well as the link). %C A196837 From _Wolfdieter Lang_, Oct 12 2011: (Start) %C A196837 With the formulas given below one finds for n >= 1, k >= 0, Sum_{j=1..n} j^k = %C A196837 Sum_{m=0..min(k,n-1)} ((n-m)*S1(n+1, n-m+1)*S2(k+n-m, n)), %C A196837 with the Stirling numbers S1 from A048994 and S2 from A048993 (this formula I did not (yet) find in the literature). See the link for the proof. %C A196837 For two other formulas expressing these sums of k-th powers of the first n positive integers in terms of the row no. k of Stirling2 numbers and binomials in n see the D. E. Knuth reference given under A093556, p. 285. %C A196837 See also the given link below, eqs. (11) and (12). (End) %H A196837 José L. Cereceda, <a href="https://arxiv.org/abs/2301.02141">A refinement of Lang's formula for the sum of powers of integers</a>, arXiv:2301.02141 [math.NT], 2023. %H A196837 Wolfdieter Lang, <a href="/A196837/a196837.pdf">Proofs and first 15 row polynomials</a>, 2011. %F A196837 a(n,m) = [x^m] P(n,x), m=0..n-1, with the row polynomials defined by %F A196837 (Sum_{j=1..n} 1/(1-j*x))*Product_{j=1..n} (1-j*x) (see the comment given above). %F A196837 Sum_{j=1..n} j^k = Sum_{m=0..n-1} a(n,m)*S2(k+n-m,n), n >= 1, k >= 0, with the Stirling2 triangle A048993. %F A196837 From _Wolfdieter Lang_, Oct 12 2011: (Start) %F A196837 The row polynomial P(n,x) is therefore %F A196837 Sum_{j=1..n} (Product_{k=1..n omitting k=j} (1-k*x)), n >= 1. This leads to: %F A196837 a(n,m) = (n-m)*S1(n+1, n+1-m), n-1 >= m >= 0, with the (signed) Stirling1 numbers A048994. For the proof see the link. %F A196837 (End) %F A196837 A similar polynomial occurs in the expansion of 1/(n+x)^2 as a series with factorials in the denominator: 1/(n+x)^2 = -Sum_{k>=1} n!/(n+k+1)! * P(k,1/x) x^(k-1). - _Matt Majic_, Nov 01 2019 %e A196837 n\m 0 1 2 3 4 5... %e A196837 1 1 %e A196837 2 2 -3 %e A196837 3 3 -12 11 %e A196837 4 4 -30 70 -50 %e A196837 5 5 -60 255 -450 274 %e A196837 6 6 -105 700 -2205 3248 -1764 %e A196837 ... %e A196837 n=4 (A001551=2*A196836): the row polynomial factorizes into 2*(2-5*x)*(1-5*x+5*x^2). %e A196837 n=5: 1^k + 2^k + 3^k + 4^k + 5^k, k>=0, (A001552) has as e.g.f. Sum_{j=1..5} exp(j*x). The o.g.f. is %e A196837 Sum_{j=1..5} 1/(1-j*x), and this is %e A196837 (5 - 60*x + 255*x^2 - 450*x^3 + 274*x^4)/Product_{j=1..5} (1-j*x). %e A196837 n=6 (A001553): the row polynomial factorizes into %e A196837 (2 - 7*x)*(3 - 42*x + 203*x^2 - 392*x^3 + 252*x^4). %e A196837 Sums of powers of the first n positive integers in terms of S2: %e A196837 n=4: A001551(k) = 4*S2(k+4,4) - 30*S2(k+3,4) + 70*S2(k+2,4) - 50*S2(k+1,4), k >= 0. E.g., k=3: 4*350 - 30*65 + 70*10 - 50*1 = 100 = A001551(3). %e A196837 From _Wolfdieter Lang_, Oct 12 2011: (Start) %e A196837 Row polynomial for n=3: P(3,x) = (1-2*x)*(1-3*x) + (1-1*x)*(1-3*x) + (1-1*x)*(1-2*x) = 3 - 12*x + 11*x^2. %e A196837 a(3,2) = +(sigma_2(2,3) + sigma_2(1,3) + sigma_2(1,2)) = %e A196837 2*3 + 1*3 + 1*2 = 11 = +1*sigma_2(1,2,3) = +1*|S1(4,4-2)|. %e A196837 S1,S2 formula for sums of powers with n=4, k=3: %e A196837 A001551(3) = Sum_{j=1..n} j^3 = 1*4*350 - 3*10*65 + 2*35*10 - 1*50*1 = 100. (End) %t A196837 a[n_, m_] := (n-m)*StirlingS1[n+1, n+1-m]; Flatten[ Table[ a[n, m], {n, 1, 10}, {m, 0, n-1}] ] (* _Jean-François Alcover_, Dec 02 2011, after _Wolfdieter Lang_ *) %o A196837 (Python) %o A196837 from itertools import count, islice %o A196837 from sympy.functions.combinatorial.numbers import stirling %o A196837 def A196837_T(n,m): return (n-m)*stirling(n+1,n+1-m,kind=1,signed=True) %o A196837 def A196837_gen(): # generator of terms %o A196837 return (A196837_T(n,m) for n in count(1) for m in range(n)) %o A196837 A196837_list = list(islice(A196837_gen(),40)) # _Chai Wah Wu_, Oct 24 2024 %Y A196837 Cf. A103438, A093556/A093557 (for sums of powers). %K A196837 sign,easy,tabl %O A196837 1,2 %A A196837 _Wolfdieter Lang_, Oct 10 2011