cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A196838 Numerators of coefficients of Bernoulli polynomials with rising powers of the variable.

This page as a plain text file.
%I A196838 #57 Jun 16 2023 17:53:11
%S A196838 1,-1,1,1,-1,1,0,1,-3,1,-1,0,1,-2,1,0,-1,0,5,-5,1,1,0,-1,0,5,-3,1,0,1,
%T A196838 0,-7,0,7,-7,1,-1,0,2,0,-7,0,14,-4,1,0,-3,0,2,0,-21,0,6,-9,1,5,0,-3,0,
%U A196838 5,0,-7,0,15,-5,1,0,5,0,-11,0,11,0,-11,0,55,-11,1
%N A196838 Numerators of coefficients of Bernoulli polynomials with rising powers of the variable.
%C A196838 The denominator triangle is found under A196839.
%C A196838 This is the row reversed triangle A053382.
%C A196838 From _Wolfdieter Lang_, Oct 25 2011: (Start)
%C A196838 This is the Sheffer triangle (z/(exp(z)-1),z), meaning that the column e.g.f.'s are as given below in the formula section. In Roman's book `The Umbral Calculus`, Ch. 2, 5., p. 26ff this is called Appell for (exp(t)-1)/t (see A048854 for the reference).
%C A196838 The e.g.f. for the a- and z-sequence for this Sheffer triangle is 1 and (x-exp(x)+1)/x^2, respectively. See the link under A006232 for the definition. The z-sequence is z(n) = -1/(2*A000217(n+1)). This leads to the recurrence relations given below.
%C A196838 The e.g.f. for the row sums is x/(1-exp(-x)), leading to the rational sequence A164555(n)/A027664(n). The e.g.f. of the alternating row sums is
%C A196838   x/(exp(x)*(exp(x)-1)), leading to the rational sequence
%C A196838   (-1)^n*A164558(n)/A027664(n).
%C A196838 (End)
%D A196838 R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1991 (Seventh printing).Second ed. 1994.
%H A196838 Naho Kawasaki and Yasuo Ohno, <a href="http://math.colgate.edu/~integers/x39/x39.pdf">The triangle algorithm for Bernoulli polynomials</a>, Integers, vol. 23 (2023). (See figure 4.)
%H A196838 Wolfdieter Lang, <a href="https://arxiv.org/abs/1707.04451">On Sums of Powers of Arithmetic Progressions, and Generalized Stirling, Eulerian and Bernoulli numbers</a>, arXiv:1707.04451 [math.NT], 2017.
%H A196838 D. H. Lehmer, <a href="http://www.jstor.org/stable/2322383">A new approach to Bernoulli polynomials</a>, The American mathematical monthly 95.10 (1988): 905-911.
%F A196838 T(n,m) = numerator([x^m]Bernoulli(n,x)), n>=0, m=0..n.
%F A196838 E.g.f. of Bernoulli(n,x): z*exp(x*z)/(exp(z)-1).
%F A196838 See the Graham et al. reference, eq. (7.80), p. 354.
%F A196838 From _Wolfdieter Lang_, Oct 25 2011: (Start)
%F A196838 The e.g.f. for column no. m>=0 of the rational triangle B(n,m):=a(n,m)/A096839(n,m) is x^(m+1)/(m!*(exp(x)-1)).
%F A196838 (see the Sheffer-Appell comment above).
%F A196838 The Sheffer a-sequence, given as comment above, leads to the recurrence r(n,m)=(n/m)*r(n-1,m-1), n>=1, m>=1. E.g., -1/6 = B(5,1) = (5/1)*B(4,0)= -5/30 = -1/6.
%F A196838 The Sheffer z-sequence, given as comment above, leads to the recurrence
%F A196838 B(n,0) = n*sum(z(j)*B(n-1,j),j=0..n-1), n>=1. B(0,0)=1.
%F A196838 E.g., -1/30 = B(4,0) = 4*((-1/2)*0 + (-1/6)*(1/2) + (-1/12)*(-3/2) + (-1/20)*1) = -1/30.
%F A196838 (End)
%F A196838 T(n,m) = numerator(binomial(n,m)*Bernoulli(n-m)). - _Fabián Pereyra_, Mar 04 2020
%e A196838 The triangle starts with
%e A196838 n\m 0  1  2  3  4  5  6  7  8 ...
%e A196838 0:  1
%e A196838 1: -1  1
%e A196838 2:  1 -1  1
%e A196838 3:  0  1 -3  1
%e A196838 4: -1  0  1 -2  1
%e A196838 5:  0 -1  0  5 -5  1
%e A196838 6:  1  0 -1  0  5 -3  1
%e A196838 7:  0  1  0 -7  0  7 -7  1
%e A196838 8: -1  0  2  0 -7  0 14 -4  1
%e A196838 ...
%e A196838 The rational triangle a(n,m)/A196839(n,m) starts with:
%e A196838 n\m   0     1     2    3    4    5     6    7   8 ...
%e A196838 0:    1
%e A196838 1:  -1/2    1
%e A196838 2:   1/6   -1     1
%e A196838 3:    0    1/2  -3/2   1
%e A196838 4:  -1/30   0     1   -2    1
%e A196838 5:    0   -1/6    0   5/3 -5/2   1
%e A196838 6:   1/42   0   -1/2   0   5/2  -3     1
%e A196838 7:    0    1/6    0  -7/6   0   7/2  -7/2   1
%e A196838 8:  -1/30   0    2/3   0  -7/3   0   14/3  -4   1
%e A196838 ...
%e A196838 E.g., Bernoulli(2,x) = (1/6)*x^0 - 1*x^1 + 1*x^2.
%p A196838 # Without using Maple's Bernoulli polynomials (Kawasaki and Ohno call it
%p A196838 # the 'triangle algorithm for B(n, x)'):
%p A196838 b := proc(n, m, x) option remember; if n = 0 then 1/(m + 1) else
%p A196838 normal((m + 1)*b(n-1, m + 1, x) - (m + 1 - x)*b(n-1, m, x)) fi end:
%p A196838 Bcoeffs := n -> local k; [seq(coeff(b(n, 0, x), x, k), k = 0..n)]:
%p A196838 for n from 0 to 8 do numer(Bcoeffs(n)) od; # _Peter Luschny_, Jun 16 2023
%t A196838 row[n_] := CoefficientList[BernoulliB[n, x], x] // Numerator;
%t A196838 Table[row[n], {n, 0, 12}] // Flatten (* _Jean-François Alcover_, Jun 15 2018 *)
%o A196838 (PARI) row(n) = apply(x->numerator(x), Vecrev(bernpol(n)));
%o A196838 tabl(nn) = for (n=0, nn, print(row(n))); \\ _Michel Marcus_, Jun 15 2018
%Y A196838 Three versions of coefficients of Bernoulli polynomials: A053382/A053383; for reflected version see A196838/A196839; see also A048998 and A048999.
%K A196838 sign,easy,tabl,frac
%O A196838 0,9
%A A196838 _Wolfdieter Lang_, Oct 23 2011