cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A196839 Triangle of denominators of the coefficient of x^m in the n-th Bernoulli polynomial, 0 <= m <= n.

Original entry on oeis.org

1, 2, 1, 6, 1, 1, 1, 2, 2, 1, 30, 1, 1, 1, 1, 1, 6, 1, 3, 2, 1, 42, 1, 2, 1, 2, 1, 1, 1, 6, 1, 6, 1, 2, 2, 1, 30, 1, 3, 1, 3, 1, 3, 1, 1, 1, 10, 1, 1, 1, 5, 1, 1, 2, 1, 66, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 6, 1, 2, 1, 1, 1, 1, 1, 6, 2, 1, 2730, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1
Offset: 0

Views

Author

Wolfdieter Lang, Oct 23 2011

Keywords

Comments

The numerator triangle is found under A196838.
This is the row reversed triangle A053383.

Examples

			The triangle starts with
n\m 0  1  2  3  4  5  6  7  8 ...
0:  1
1:  2  1
2:  6  1  1
3:  1  2  2  1
4: 30  1  1  1  1
5:  1  6  1  3  2  1
6: 42  1  2  1  2  1  1
7:  1  6  1  6  1  2  2  1
8: 30  1  3  1  3  1  3  1  1
...
For the start of the rational triangle A196838(n,m)/a(n,m) see the example section in A196838.
		

Crossrefs

Three versions of coefficients of Bernoulli polynomials: A053382/A053383; for reflected version see A196838/A196839; see also A048998 and A048999.

Programs

  • Maple
    with(ListTools):with(PolynomialTools):
    CoeffList := p -> CoefficientList(p, x):
    Trow := n -> denom(CoeffList(bernoulli(n, x))):
    Flatten([seq(Trow(n), n = 0..12)]); # Peter Luschny, Apr 10 2021

Formula

T(n,m) = denominator([x^m]Bernoulli(n,x)), n>=0, m=0..n.
E.g.f. of Bernoulli(n,x): z*exp(x*z)/(exp(z)-1).
See the Graham et al. reference given in A196838, eq. (7.80), p. 354.
T(n,m) = denominator(binomial(n,m)*Bernoulli(n-m)). - Fabián Pereyra, Mar 04 2020

Extensions

Name edited by M. F. Hasler, Mar 09 2020