A196839 Triangle of denominators of the coefficient of x^m in the n-th Bernoulli polynomial, 0 <= m <= n.
1, 2, 1, 6, 1, 1, 1, 2, 2, 1, 30, 1, 1, 1, 1, 1, 6, 1, 3, 2, 1, 42, 1, 2, 1, 2, 1, 1, 1, 6, 1, 6, 1, 2, 2, 1, 30, 1, 3, 1, 3, 1, 3, 1, 1, 1, 10, 1, 1, 1, 5, 1, 1, 2, 1, 66, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 6, 1, 2, 1, 1, 1, 1, 1, 6, 2, 1, 2730, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1
Offset: 0
Examples
The triangle starts with n\m 0 1 2 3 4 5 6 7 8 ... 0: 1 1: 2 1 2: 6 1 1 3: 1 2 2 1 4: 30 1 1 1 1 5: 1 6 1 3 2 1 6: 42 1 2 1 2 1 1 7: 1 6 1 6 1 2 2 1 8: 30 1 3 1 3 1 3 1 1 ... For the start of the rational triangle A196838(n,m)/a(n,m) see the example section in A196838.
Links
- D. H. Lehmer, A new approach to Bernoulli polynomials, The American mathematical monthly 95.10 (1988): 905-911.
Crossrefs
Programs
-
Maple
with(ListTools):with(PolynomialTools): CoeffList := p -> CoefficientList(p, x): Trow := n -> denom(CoeffList(bernoulli(n, x))): Flatten([seq(Trow(n), n = 0..12)]); # Peter Luschny, Apr 10 2021
Formula
T(n,m) = denominator([x^m]Bernoulli(n,x)), n>=0, m=0..n.
E.g.f. of Bernoulli(n,x): z*exp(x*z)/(exp(z)-1).
See the Graham et al. reference given in A196838, eq. (7.80), p. 354.
T(n,m) = denominator(binomial(n,m)*Bernoulli(n-m)). - Fabián Pereyra, Mar 04 2020
Extensions
Name edited by M. F. Hasler, Mar 09 2020
Comments