cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A196844 Table of the elementary symmetric functions a_k(1,2,3,4,6,...,n+1) (5 missing).

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 1, 6, 11, 6, 1, 10, 35, 50, 24, 1, 16, 95, 260, 324, 144, 1, 23, 207, 925, 2144, 2412, 1008, 1, 31, 391, 2581, 9544, 19564, 20304, 8064, 1, 40, 670, 6100, 32773, 105460, 196380, 190800, 72576, 1, 50, 1070, 12800, 93773, 433190, 1250980
Offset: 0

Views

Author

Wolfdieter Lang, Oct 25 2011

Keywords

Comments

For the symmetric functions a_k and the definition of the triangles S_j(n,k) see a comment in A196841. Here x(j) = j for j = 1, 2, 3, 4 and x(j) = j + 1 for j = 5, ..., n. This is the triangle S_5(n,k), n >= 0, k = 0..n. The first five rows coincide with those of triangle A094638.

Examples

			n\k 0   1    2     3     4      5      6     7 ...
0:  1
1:  1   1
2:  1   3    2
3:  1   6   11     6
4:  1  10   35    50    24
5:  1  16   95   260   324    144
6:  1  23  207   925  2144   2412   1008
7:  1  31  391  2581  9544  19564  20304  8064
...
a(4,0) = a_0(1, 2, 3, 4) := 1, a(4,1) = a_1(1, 2, 3, 4) = 10.
a(5,2) = a_2(1, 2, 3, 4, 6) = 1*2 + 1*3 + 1*4 + 1*6 + 2*3 + 2*4 + 2*6 + 3*4 + 3*6 + 4*6 = 95.
a(5,2) = 1*|s(7,5)| - 5*|s(7,6)| + 25*|s(7,7)| = 1*175 - 5*21 + 25*1 = 95.
		

Crossrefs

Formula

a(n,k) = a_k(1, 2, ..., n) if 0 <= n < 5, and a_k(1, 2, 3, 4, 6, 7, ..., n+1) if n >= 5, with the elementary symmetric functions a_k defined in a comment to A196841.
a(n,k) = 0 if n < k, a(n,k) = |s(n+1, n+1-k)| if 0 <= n < 5, and
a(n,k) = sum((-5)^m*|s(n+2, n+2-k+m)|, m = 0..k) if n >= 5, with the Stirling numbers of the first kind s(n,m)=A048994(n,m).