This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A196846 #7 Mar 30 2012 18:49:34 %S A196846 1,1,1,1,3,2,1,8,17,10,1,14,65,112,60,1,21,163,567,844,420,1,29,331, %T A196846 1871,5380,7172,3360,1,38,592,4850,22219,55592,67908,30240,1,48,972, %U A196846 10770,70719,277782,623828,709320,302400,1,59,1500,21462,189189,1055691,3679430,7571428,8104920,3326400 %N A196846 Table of elementary symmetric functions a_k(1,2,5,6,...,n+2) (no 3,4). %C A196846 For the symmetric functions a_k see a comment in A196841. %C A196846 The definition of the family of number triangles %C A196846 S_{i,j}(n,k),n>=k>=0, 1<=i<j<=n+2, has been given in %C A196846 A196845. The present triangle is S_{3,4}(n,k) (no 3 and 4 %C A196846 admitted). The first three lines coincide with those of %C A196846 triangle A094638(n+1,k+1) which tabulates a_k(1,2,...,n). %F A196846 a(n,k) = 0 if n<k, a(0,0) = 1, a(1,k) = a_k(1) for k=0,1, a(2,k) = a_k(1,2) for k=0,1,2, and a(n,k) = a_k(1,2,5,6,...,n+2), n>=3; k=0..n, with the elementary symmetric functions a_k (see the comment above). %F A196846 a(n,k) = |s(n+1,n+1-k)| for 0<=n<3, %F A196846 a(n,k) = sum(((3*4)^m)*(|s(n+3,n+3-k+2*m)| - (3*S_3(n+1,k-1-2*m) + 4*S_4(n+1,k-1-2*m))),m = 0..floor(k/2)), with the Stirling numbers of the first kind s(n,m) = A048994(n,m), and the number triangles S_3(n,k)= A196842(n,k) and S_4(n,k)= A196843(n,k) (for negative k one puts the entries of these triangles to 0). %e A196846 n\k 0 1 2 3 4 5 6 7 ... %e A196846 0: 1 %e A196846 1: 1 1 %e A196846 2: 1 3 2 %e A196846 3: 1 8 17 10 %e A196846 4: 1 14 65 112 60 %e A196846 5: 1 21 163 567 844 420 %e A196846 6: 1 29 331 1871 5380 7172 3360 %e A196846 7: 1 38 592 4850 22219 55592 67908 30240 %e A196846 ... %e A196846 a(2,2)=a_2(1,2)=A094638(3,3)=1*2=2. %e A196846 a(2,2) = |s(3,1)| = 2. %e A196846 a(4,2) = a_2(1,2,5,6) = 1*2+1*5+1*6+2*5+2*6+5*6 = 65. %e A196846 a(4,2) = 1*(|s(7,5)| - (3*S_3(5,1) + 4*S_4(5,1))) + %e A196846 3*4*(|s(7,7)| -(3*0 + 4*0)) = 1*(175 -(3*18 + 4*17)) %e A196846 + 12*1 = 65. %Y A196846 Cf. A094638 (a_k triangle), A196845 (no 1,2 triangle), A196842 (no 3), A196843 (no 4). %K A196846 nonn,easy,tabl %O A196846 0,5 %A A196846 _Wolfdieter Lang_, Oct 27 2011