cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A196847 Coefficient table of numerator polynomials of the ordinary generating function for the alternating power sums for the numbers 1,2,...,2*n.

This page as a plain text file.
%I A196847 #11 Oct 22 2022 16:20:03
%S A196847 1,1,-5,7,1,-14,73,-168,148,1,-27,298,-1719,5473,-9162,6396,1,-44,830,
%T A196847 -8756,56453,-227744,562060,-778800,468576,1,-65,1865,-31070,332463,
%U A196847 -2385305,11612795,-37875240,79269676,-96420480,52148160,1,-90,3647,-87900,140202
%N A196847 Coefficient table of numerator polynomials of the ordinary generating function for the alternating power sums for the numbers 1,2,...,2*n.
%C A196847 The row length sequence of this array is A005408(n-1), n >= 1: 1,3,5,7,...
%C A196847 This is the array for the numerator polynomials of the o.g.f. of alternating power sums of the first 2*n positive integers.
%C A196847 The corresponding array for the first 2*n+1 positive integers is found in A196848.
%C A196847 The obvious e.g.f. of a(k,2*n) := Sum_{j=1..2*n} (-1)^j * j^k is ge(n,x) := Sum_{k>=0} a(k,2*n)*(x^k)/k! = Sum_{j=1..2*n} (-1)^j * exp(j*x) = exp(x)*(exp(2*n*x) - 1)/(exp(x) + 1).
%C A196847 Via Laplace transformation (see the link under A196837, addendum) one finds the corresponding o.g.f.: Ge(n,x) = n*x*Pe(n,x)/Product_{j=1..2*n} (1 - j*x) with the numerator polynomial Pe(n,x) = Sum_{m=0..2*(n-1)} a(n,m)*x^m.
%F A196847 a(n,m) = [x^m](Ge(n,x)*Product_{j=1..2*n} (1 - j*x/(n*x))), with the o.g.f. Ge(n,x) of the sequence a(k,2*n) := Sum_{j=1..2*n} (-1)^j * j^k. See a comment above.
%F A196847 a(n,m) = (1/n)*(-1)^m*Sum_{i=1..n} S_{2*i-1,2*i}(2*(n-1),m), n >= 1, with the (i,j)-family of number triangles S_{i,j}(n,k) defined in a comment to A196845.
%e A196847 n\m 0   1   2     3     4       5      6       7      8
%e A196847 1:  1
%e A196847 2:  1  -5   7
%e A196847 3:  1 -14  73  -168   148
%e A196847 4:  1 -27 298 -1719  5473   -9162   6396
%e A196847 5:  1 -44 830 -8756 56453 -227744 562060 -778800 468576
%e A196847 ...
%e A196847 The o.g.f. for the sequence a(k,4) := -(1^k - 2^k + 3^k -4^k) = 2*A053154(k), k>=0, (n=2) is Ge(2,x) = 2*x*(1-5*x+7*x^2)/Product_{j=1..4} (1 - j*x).
%e A196847 a(3,2) = (S_{1,2}(4,2) + S_{3,4}(4,2) + S_{5,6}(4,2))/3 = (A196845(4,2) + A196846(4,2) + |s(5,3)|)/3 = (119+65+35)/3 = 73. Here S_{5,6}(4,2) = a_2(1,2,3,4) = |s(5,3)|, with the Stirling numbers of the first kind s(n,m) = A048994(n,m) was used.
%Y A196847 Cf. A196848, A196837.
%K A196847 sign,easy,tabf
%O A196847 1,3
%A A196847 _Wolfdieter Lang_, Oct 27 2011