cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A196848 Coefficient array of numerator polynomials of the ordinary generating functions for the alternating sums of powers for the numbers 1,2,...,2*n+1.

This page as a plain text file.
%I A196848 #11 Oct 22 2022 16:19:40
%S A196848 1,1,-4,5,1,-12,55,-114,94,1,-24,238,-1248,3661,-5736,3828,1,-40,690,
%T A196848 -6700,40053,-151060,351800,-465000,270576,1,-60,1595,-24720,247203,
%U A196848 -1665900,7660565,-23745720,47560876,-55805520,29400480,1,-84,3185,-72030,1081353,-11344872,85234175,-461800710,1790256286,-4843901664,8693117160,-9320129280,4546558080
%N A196848 Coefficient array of numerator polynomials of the ordinary generating functions for the alternating sums of powers for the numbers 1,2,...,2*n+1.
%C A196848 The row length sequence of this array is A005408(n), n>=0: 1,3,5,7,...
%C A196848 This is the array for the numerator polynomials of the o.g.f. of alternating sums of powers of the first 2*n+1 positive integers.
%C A196848 The corresponding array for the first 2*n positive integers is found in A196847.
%C A196848 The obvious e.g.f. of a(k,2*n+1) := Sum_{j=1..2*n+1} (-1)^(j+1) * j^k is go(n,x) := Sum_{k>=0} a(k,2*n+1)*(x^k)/k! = Sum_{j=1..2*n+1} (-1)^(j+1) * exp(j*x) = exp(x)*(exp((2*n+1)*x) + 1)/(exp(x) + 1).
%C A196848 Via Laplace transformation (see the link under A196837, addendum) one finds the corresponding o.g.f.: Go(n,x) = Po(n,x)/Product_{j=1..2*n+1} (1 - j*x) with the numerator polynomial Po(n,x) = Sum_{m=0..2*n} a(n,m)*x^m.
%F A196848 a(n,m) = [x^m](Go(n,x)*Product_{j=1..2*n+1} (1-j*x)), with the o.g.f. Go(n,x) of the sequence a(k,2*n+1) := Sum_{j=1..2*n+1} (-1)^(j+1) * j^k. See a comment above.
%F A196848 a(n,0) = 1, n >= 0, and a(n,m) = (-1)^m*((Sum_{i=1..n} S_{2*i-1,2*i}(2*(n-1),m)) + |s(2*n+1,2n+1-m)|), n >= 0, m = 1..2*n, with the (i,j)-family of number triangles S_{i,j}(n,k) defined in a comment on A196845, and the Stirling numbers of the first kind s(n,m) = A048994(n,m).
%e A196848 n\m 0   1   2     3     4       5      6       7       8
%e A196848 0:  1
%e A196848 1:  1  -4   5
%e A196848 2:  1 -12  55  -114    94
%e A196848 3:  1 -24 238 -1248  3661   -5736   3828
%e A196848 4:  1 -40 690 -6700 40053 -151060 351800 -465000, 270576
%e A196848 ...
%e A196848 The o.g.f. for the sequence a(k,5) := (1^k - 2^k + 3^k - 4^k + 5^k) = A198628(k), k >= 0, (n=2) is Go(2,x) = (1 - 12*x + 55*x^2 - 114*x^3 + 94*x^4)/Product_{j=1..5} (1-j*x).
%e A196848 a(3,2) = S_{1,2}(5,1) + S_{3,4}(5,1) + S_{5,6}(5,1) + |s(7,5)| = A196845(5,1) + A196846(5,1) + 17 + |s(7,5)| = 25+21+17+175 = 238. Here S_{5,6}(5,1) = 1+2+3+4+7 = 17 was used.
%Y A196848 Cf. A196847, A196837.
%K A196848 sign,easy,tabf
%O A196848 0,3
%A A196848 _Wolfdieter Lang_, Oct 27 2011