A196851 Number of n X 3 0..4 arrays with each element x equal to the number its horizontal and vertical neighbors equal to 3,1,0,2,4 for x=0,1,2,3,4.
4, 38, 206, 1370, 8767, 56470, 363685, 2343584, 15108610, 97376923, 627590184, 4044924351, 26070308556, 168028055199, 1082971243944, 6979940126878, 44986968132898, 289949111595991, 1868774104215258, 12044584704922151
Offset: 1
Keywords
Examples
Some solutions for n=4 ..0..1..0....0..2..0....1..0..1....0..0..0....1..2..0....1..0..2....1..0..0 ..0..1..0....1..1..0....1..2..1....0..2..1....1..0..0....1..2..0....1..0..0 ..0..2..0....2..0..0....0..0..0....0..2..1....0..1..2....0..2..0....2..0..0 ..0..1..1....0..0..0....2..0..2....0..0..0....0..1..0....1..1..0....0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
Crossrefs
Cf. A196856.
Formula
Empirical: a(n) = 2*a(n-1) +15*a(n-2) +56*a(n-3) +146*a(n-4) +360*a(n-5) +425*a(n-6) -1080*a(n-7) -2478*a(n-8) -3775*a(n-9) -9754*a(n-10) -17994*a(n-11) -19980*a(n-12) -14594*a(n-13) -14650*a(n-14) -19546*a(n-15) -5675*a(n-16) +14364*a(n-17) +18717*a(n-18) +4862*a(n-19) +1390*a(n-20) +267*a(n-21) +8378*a(n-22) -3292*a(n-23) +1287*a(n-24) -719*a(n-25) +281*a(n-26) -181*a(n-27) +42*a(n-28) -5*a(n-29) for n>31.
Comments