This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A196870 #11 Apr 10 2016 08:18:53 %S A196870 1,2,6,36,360,6120,171360,7882560,591192000,72125424000, %T A196870 14280833952000,4584147698592000,2383756803267840000, %U A196870 2007123228351521280000,2735708960243123504640000,6034973966296330451235840000,21544857059677899710911948800000 %N A196870 a(n+1) = A001610(n)*a(n). %C A196870 Determinant of the n X n matrix with consecutive Lucas numbers along the main diagonal, and 1's everywhere else. %C A196870 Log(a(n))/n^2 approaches a constant (approximately 0.24) as n approaches infinity. %C A196870 This limit is equal to log(phi)/2 = 0.24060591252980172374887945671218421156759..., where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - _Vaclav Kotesovec_, Apr 10 2016 %F A196870 prod(F(k)+F(k+2)-1, k=1..n-1), where F(k) is the k-th Fibonacci number. %F A196870 a(n) ~ c * phi^(n*(n+1)/2), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio and c = 0.22805409619361969822736866017363184926893729185052240813641180656087... . - _Vaclav Kotesovec_, Apr 10 2016 %t A196870 Table[Det[Array[1+(LucasL[#1]-1)*KroneckerDelta[#1,#2]&,{n,n}]],{n,30}] (* or *) %t A196870 Table[Product[Fibonacci[k]+Fibonacci[k+2]-1,{k,1,n-1}],{n,30}] (* or *) %t A196870 RecurrenceTable[{a[n+1]==(Fibonacci[n]+Fibonacci[n+2]-1) a[n], a[1] == 1}, a, {n, 30}] %Y A196870 Cf. A001610, A003266, A000032. %K A196870 nonn,easy %O A196870 1,2 %A A196870 _John M. Campbell_, Oct 06 2011