This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A196875 #29 Mar 28 2024 13:19:10 %S A196875 1,1,1,1,4,8,16,32,64,125,243,471,911,1759,3394,6546,12622,24334, %T A196875 46910,90427,174309,335997,647661,1248413,2406400,4638492,8940988, %U A196875 17234316,33220220,64034041,123429591,237918195,458602075,883983931,1703933822,3284438054 %N A196875 a(n) = a(n-4) + a(n-3) + a(n-2) + a(n-1) + (n-5). %H A196875 Alois P. Heinz, <a href="/A196875/b196875.txt">Table of n, a(n) for n = 1..1000</a> %H A196875 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (3,-2,0,0,-1,1). %F A196875 G.f.: (x^5-3*x^4+2*x-1)*x / ((x^4+x^3+x^2+x-1)*(x-1)^2 ). %F A196875 a(n) = +3*a(n-1) -2*a(n-2) -a(n-5) +a(n-6). %F A196875 a(n) = 5/9-n/3 +(10*A000078(n) +17*A000078(n+1) +21*A000078(n+2) -14*A000078(n+3))/9. - _R. J. Mathar_, Oct 16 2011 %p A196875 a:= n-> (Matrix(6, (i, j)-> `if`(i=j-1, 1, `if`(i=6, [1, -1, 0, 0, -2, 3][j], 0)))^n. <<-1, 1, 1, 1, 1, 4>>)[1, 1]: seq(a(n), n=1..50); # _Alois P. Heinz_, Oct 15 2011 %t A196875 nn = 40; a[1] = a[2] = a[3] = a[4] = 1; Do[a[n] = a[n - 1] + a[n - 2] + a[n - 3] + a[n - 4] + (n - 5), {n, 5, nn}]; Table[a[n], {n, nn}] (* _T. D. Noe_, Oct 07 2011 *) %t A196875 RecurrenceTable[{a[1]==a[2]==a[3]==a[4]==1,a[n]==a[n-1]+a[n-2]+a[n-3]+a[n-4]+(n-5)},a,{n,40}] (* or *) LinearRecurrence[{3,-2,0,0,-1,1},{1,1,1,1,4,8},40] (* _Harvey P. Dale_, Aug 25 2014 *) %Y A196875 Cf. A000126, A196787. %K A196875 nonn,easy %O A196875 1,5 %A A196875 _Aditya Subramanian_, Oct 07 2011