This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A196876 #41 Mar 28 2024 16:11:51 %S A196876 1,1,1,1,1,1,1,7,14,28,56,112,224,448,896,1786,3559,7091,14127,28143, %T A196876 56063,111679,222463,443141,882724,1758358,3502590,6977038,13898014, %U A196876 27684350,55146238,109849336,218815949,435873541,868244493,1729511949,3445125885 %N A196876 a(n) = a(n-no-1)+....+a(n-1)+(n-no-2) where no is the 'no+1'th order of the series and 'n' is the element number, here no=6. %C A196876 A196787, A000126, and A000124 are all specific series of this general formula of series. When no=2 the series is A196787. When no=0 the series is A000124 with an additional '1' at the beginning. When no=1 the series is A000126 with an additional '1' at the beginning. %C A196876 The data given above is the series with no=6 and n=25, having a(1)=.....a(no+1)=1 initially. %H A196876 Vincenzo Librandi, <a href="/A196876/b196876.txt">Table of n, a(n) for n = 1..1000</a> %H A196876 <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (3,-2,0,0,0,0,0,-1,1). %F A196876 a(n)=1 if n<=7, else a(n) = n-no-2+sum_{i=1..no+1} a(n-i), no=6. %F A196876 G.f.: x*( -1+2*x-6*x^7+4*x^8 ) / ( (x^7+x^6+x^5+x^4+x^3+x^2+x-1)*(x-1)^2 ). - _R. J. Mathar_, Oct 21 2011 %e A196876 For n=25, no=6, then a(1)=1, a(2)=1, ......, a(no)=1 and a(7)=a(1)+a(2)+....a(no)+(6-no), a(8)=a(2)+...a(no+1)+(7-no), a(n)=a(n-no)+....a(n-1)+((n-1)-no) and so a(25)=a(19)+....a(24)+(24-6). %p A196876 A196876 := proc(n) %p A196876 option remember; %p A196876 if n <= 7 then %p A196876 1; %p A196876 else %p A196876 n-6-2+add(procname(n-i),i=1..7) ; %p A196876 end if; %p A196876 end proc: # _R. J. Mathar_, Oct 21 2011 %t A196876 CoefficientList[Series[(- 1 + 2 x - 6 x^7 + 4 x^8)/((x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x - 1) (x - 1)^2), {x, 0, 40}], x] (* _Vincenzo Librandi_, Dec 11 2012 *) %K A196876 nonn,easy %O A196876 1,8 %A A196876 _Aditya Subramanian_, Oct 07 2011