A196914 Decimal expansion of the number c for which the curve y=1/(1+x^2) is tangent to the curve y=c*cos(x), and 0 < x < 2*Pi.
8, 7, 4, 4, 6, 0, 0, 3, 6, 6, 2, 4, 0, 0, 9, 2, 6, 5, 5, 4, 8, 1, 4, 6, 4, 4, 8, 4, 0, 6, 7, 3, 7, 2, 5, 6, 6, 3, 0, 7, 3, 9, 7, 2, 6, 9, 8, 4, 4, 6, 9, 0, 8, 1, 4, 0, 1, 1, 2, 0, 4, 5, 2, 1, 2, 5, 9, 6, 0, 1, 1, 1, 5, 6, 1, 3, 3, 3, 0, 4, 9, 8, 5, 5, 8, 1, 3, 8, 7, 2, 6, 2, 2, 4, 2, 0, 7, 7, 5
Offset: 0
Examples
c=0.87446003662400926554814644840673725663073...
Programs
-
Mathematica
Plot[{1/(1 + x^2), 0.874*Cos[x]}, {x, .5, 1}] t = x /. FindRoot[Tan[x] == 2 x/(1 + x^2), {x, .5, 1}, WorkingPrecision -> 100] RealDigits[t] (* A196913 *) c = N[Sqrt[t^4 + 6 t^2 + 1]/(t^4 + 2 t^2 + 1), 100] RealDigits[c] (* A196914 *) slope = N[-c*Sin[t], 100] RealDigits[slope](* A196915 *)
Formula
x=0.87446003662400926554814644840673725663073...