cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A196933 Column 9 of array A195825. Also column 1 of triangle A195843. Also 1 together with the row sums of triangle A195843.

This page as a plain text file.
%I A196933 #42 May 17 2024 15:23:52
%S A196933 1,1,1,1,1,1,1,1,1,1,2,3,4,4,4,4,4,4,4,4,5,7,10,12,13,13,13,13,13,13,
%T A196933 14,16,21,27,32,34,35,35,35,35,36,38,44,54,67,77,83,85,86,86,87,89,95,
%U A196933 107,128,152,173,185,191,193,195,197,203,216,242,281
%N A196933 Column 9 of array A195825. Also column 1 of triangle A195843. Also 1 together with the row sums of triangle A195843.
%C A196933 Note that this sequence contains five plateaus: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 4, 4, 4, 4, 4, 4, 4], [13, 13, 13, 13, 13, 13], [35, 35, 35, 35], [86, 86]. For more information see A210843 and other sequences of this family. - _Omar E. Pol_, Jun 29 2012
%H A196933 G. C. Greubel, <a href="/A196933/b196933.txt">Table of n, a(n) for n = 0..1000</a>
%F A196933 G.f.: Product_{k>=1} 1/((1 - x^(11*k))*(1 - x^(11*k-1))*(1 - x^(11*k-10))). - _Ilya Gutkovskiy_, Aug 13 2017
%F A196933 a(n) ~ exp(Pi*sqrt(2*n/11)) / (8*sin(Pi/11)*n). - _Vaclav Kotesovec_, Aug 14 2017
%t A196933 T := Product[1/((1 - x^(11*k))*(1 - x^(11*k - 1))*(1 - x^(11*k - 10))), {k, 1, 70}]; a:= CoefficientList[Series[T, {x, 0, 60}], x]; Table[a[[n]], {n, 1, 50}] (* _G. C. Greubel_, Jun 28 2018 *)
%o A196933 (GW-BASIC) ' A program with two A-numbers:
%o A196933 10 Dim A195313(100), A057077(100), a(100): a(0)=1
%o A196933 20 For n = 1 to 66: For j = 1 to n
%o A196933 30 If A195313(j) <= n then a(n) = a(n) + A057077(j-1)*a(n - A195313(j))
%o A196933 40 Next j: Print a(n-1); : Next n
%o A196933 50 '_Omar E. Pol_, Jun 10 2012
%Y A196933 Cf. A000041, A001082, A006950, A036820, A057077, A195313, A195825, A195833, A195848, A195849, A195850, A195851, A195852, A210964, A211971.
%K A196933 nonn
%O A196933 0,11
%A A196933 _Omar E. Pol_, Oct 07 2011
%E A196933 More terms from _Omar E. Pol_, Jun 10 2012