cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A196934 a(n) is the first occurrence of n in sequence A078498.

Original entry on oeis.org

5, 8, 18, 14, 25, 38, 43, 50, 61, 48, 132, 167, 100, 88, 151, 217, 176, 216, 270, 214, 300, 785, 429, 687, 308, 1083, 374, 644, 713, 320, 840, 608, 654, 577, 1005, 1409, 1631, 1215, 928, 1386, 2304, 1984, 1203, 2336, 853, 1638, 1899, 1806, 1974, 1594, 1228
Offset: 1

Views

Author

Lei Zhou, Oct 07 2011

Keywords

Comments

Conjecture: Any prime number greater than 11 (p) can be the center term of arithmetic progressions prime chain p-6k, p, p+6k, while k>0.
a(n) is also the maximum number k that is needed to find a p(i)-6k, p(i), p(i)+6k kind of arithmetic progressions prime chain for all i <= n, while p(i) is the i-th prime number.
The Mathematica program gives the first 51 items.

Examples

			A078498(5)=1 (take the offset 5),  so a(1)=5;
2 first occurs as A078498(8), so a(2)=8;
		

Crossrefs

Programs

  • Mathematica
    max = 51; Array[fa, max]; Do[fa[i] = 0, {i, 1, max}]; ct = 0; i = 4; While[ct < max, i++; p = Prime[i]; j = 0; While[j++; df = 6*j; ! ((PrimeQ[p + df]) && (PrimeQ[p - df]))]; If[j <= max, If[fa[j] == 0, fa[j] = i; ct++]]]; Table[fa[i], {i, 1, max}]