A196936 a(n) is the first occurrence of n in sequence A196935.
5, 7, 10, 15, 17, 20, 26, 32, 33, 35, 49, 62, 54, 63, 64, 74, 69, 71, 91, 98, 92, 102, 109, 116, 120, 124, 152, 137, 147, 144, 140, 171, 165, 192, 197, 195, 199, 201, 200, 218, 220, 250, 238, 229, 239, 230, 236, 277, 267, 281, 300, 299, 301, 314, 312, 332, 325
Offset: 1
Keywords
Examples
A196935(5) = 1, so a(1) = 5; (consider the offset of 5 for A196935) A196935(7) = 2, and all A196935(k) <> 2 for k < 7, so a(2) = 7
Links
- Definition of Arithmetic Progressions of Primes
Programs
-
Mathematica
max = 57; Array[fa, max]; Do[fa[i] = 0, {i, 1, max}]; i = 4; done = 0; While[done < max, i++; p = Prime[i]; j = 0; ct = 0; While[j++; df = 6*j; df < p, If[(PrimeQ[p + df]) && (PrimeQ[p - df]), ct++]]; If[ct <= max, If[fa[ct] == 0, fa[ct] = i; done++]]]; Table[fa[i], {i, 1, max}]
Comments