cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A196942 a(n) is the prime order of sequence A196941.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 2, 1, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 3, 3, 1, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 1, 1, 1, 2, 1, 3, 2, 4, 1, 2, 2, 2, 2, 3, 2, 3, 1, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 2

Views

Author

Lei Zhou, Oct 07 2011

Keywords

Comments

Assuming 1 is the 0th prime, as what in Mathematica: PrimePi[1] = 0.
So far the first occurrence of this sequence agree with A062241 and A045535. Is this a coincidence or a theorem?

Examples

			A196941(3) = 2, which is the first prime number, so a(3) = 1;
		

Crossrefs

Programs

  • Mathematica
    FactorSet[seed_] := Module[{fset2, a, l, i}, a = FactorInteger[seed]; l = Length[a]; fset2 = {}; Do[fset2 = Union[fset2, {a[[i]][[1]]}], {i, 1, l}]; fset2]; Table[min = n; Do[r = n - k; s = Union[FactorSet[k], FactorSet[r]]; If[a = s[[Length[s]]]; a < min, min = a], {k, 1, IntegerPart[n/2]}]; PrimePi[min], {n, 2, 88}]