A196952 Number of n X 3 0..4 arrays with each element x equal to the number its horizontal and vertical neighbors equal to 2,1,3,4,0 for x=0,1,2,3,4.
3, 9, 26, 87, 282, 919, 2987, 9722, 31643, 102962, 335048, 1090310, 3548040, 11545789, 37571671, 122263766, 397863990, 1294706917, 4213164246, 13710247872, 44615134395, 145184117131, 472450174347, 1537421386475, 5002992156783
Offset: 1
Keywords
Examples
Some solutions for n=4: ..1..1..0....1..0..0....0..0..1....0..1..1....0..0..0....0..1..1....0..0..0 ..0..0..0....1..0..1....0..0..1....0..0..0....1..1..0....1..0..0....0..1..1 ..0..0..0....0..0..1....1..1..0....1..0..1....0..0..0....1..0..0....0..0..0 ..0..0..0....0..0..0....0..0..0....1..0..1....0..0..0....0..0..0....0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
Crossrefs
Cf. A196957.
Formula
Empirical: a(n) = a(n-1) +4*a(n-2) +8*a(n-3) +10*a(n-4) +a(n-5) -9*a(n-6) -6*a(n-7) +a(n-9) for n>10.
Empirical g.f.: x*(3 + 6*x + 5*x^2 + x^3 - 11*x^4 - 12*x^5 + 2*x^6 + 6*x^7 + 2*x^8 - x^9) / (1 - x - 4*x^2 - 8*x^3 - 10*x^4 - x^5 + 9*x^6 + 6*x^7 - x^9). - Colin Barker, May 10 2018
Comments