This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A196995 #8 Mar 31 2012 10:31:29 %S A196995 0,-128,-5038848,140737488355328,5000000000000000000000000, %T A196995 -354400937492545922690672153504784580608, %U A196995 -72317557999158469111384459491956546088110808312359944192,57896044618658097711785492504343953926634992332820282019728792003956564819968 %N A196995 Determinant of Killing form K(x,y) of the Lie algebra sl(n,C) for n >=1. %C A196995 K(x,y) = 2n*Tr(xy) %D A196995 J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer-Verlag, 1972, 21-22 %F A196995 a(n) = (-1)^binomial(n,2) *2^(n^2-1)*n^(n^2) for n>= 2 %p A196995 interface(rtablesize=infinity): %p A196995 with(LinearAlgebra): %p A196995 for n from 1 to 12 do %p A196995 for i from 1 by 1 to n-1 do %p A196995 M[i] := Matrix(n); %p A196995 M[i](i,i) := 1; %p A196995 M[i](i+1,i+1) := -1; %p A196995 end do: %p A196995 ctr := n: %p A196995 for i from 1 by 1 to n do %p A196995 for j from 1 by 1 to n do %p A196995 if(i <> j) then %p A196995 M[ctr] := Matrix(n); %p A196995 M[ctr](i,j) := 1; %p A196995 ctr := ctr +1; %p A196995 end if %p A196995 end do: %p A196995 end do: %p A196995 A := Matrix(n^2-1): %p A196995 for i from 1 by 1 to n^2-1 do %p A196995 for j from 1 by 1 to n^2-1 do %p A196995 A(i,j) := 2*n*Trace(M[i].M[j]): %p A196995 end do: %p A196995 end do: %p A196995 print(Determinant(A)); %p A196995 end do: %p A196995 # Alternatively, using the second description %p A196995 print(0); %p A196995 for n from 2 to 20 do %p A196995 print((-1)^(binomial(n,2))*2^(n^2-1)*n^(n^2)); %p A196995 end do: %K A196995 easy,sign %O A196995 1,2 %A A196995 _Carmen Bruni_, Oct 08 2011