cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A197000 Decimal expansion of xo, where P=(xo,yo) is the point nearest O=(0,0) in which a line y=mx meets the curve y=1+cos(x) orthogonally.

Original entry on oeis.org

1, 2, 4, 8, 8, 0, 1, 4, 3, 6, 7, 2, 1, 5, 5, 0, 8, 5, 6, 0, 4, 7, 5, 1, 2, 5, 0, 2, 0, 1, 2, 8, 3, 8, 1, 5, 3, 5, 5, 8, 7, 6, 1, 4, 3, 0, 3, 6, 0, 8, 2, 1, 6, 3, 4, 1, 4, 6, 0, 2, 5, 0, 2, 0, 4, 4, 2, 0, 8, 5, 0, 0, 0, 1, 4, 5, 2, 7, 2, 5, 5, 3, 7, 0, 6, 7, 4, 7, 9, 9, 7, 6, 6, 0, 1, 4, 2, 5, 9, 6
Offset: 1

Views

Author

Clark Kimberling, Oct 09 2011

Keywords

Comments

See the Mathematica program for a graph.

Examples

			xo=1.2488014367215508560475125020128381535587614... <------ this constant
yo=1.3164595537507515212878992732671186100622603...
m=1.05417844265684217515747734305673483746142104...
|OP|=1.81454423617045980814297669595599066552030...
		

Crossrefs

Programs

  • Mathematica
    c = 1;
    xo = x /.
      FindRoot[x == Sin[x] (c + Cos[x]), {x, 1, 1.3}, WorkingPrecision -> 100]
    RealDigits[xo] (* A197000 *)
    m = 1/Sin[xo]
    RealDigits[m]  (* A197001 *)
    yo = m*xo
    d = Sqrt[xo^2 + yo^2]
    Show[Plot[{c + Cos[c*x], yo - (1/m) (x - xo)}, {x, 0, Pi}],  ContourPlot[{y == m*x}, {x, 0, Pi}, {y, 0, 2}], PlotRange -> All, AspectRatio -> Automatic, AxesOrigin -> Automatic]
  • PARI
    solve(x=1,2, sin(x)*(cos(x)+1)-x) \\ Charles R Greathouse IV, Feb 03 2025