A197001 Decimal expansion of the slope of the line y=mx which meets the curve y=1+cos(x) orthogonally over the interval [0, 2*Pi] (as in A197000).
1, 0, 5, 4, 1, 7, 8, 4, 4, 2, 6, 5, 6, 8, 4, 2, 1, 7, 5, 1, 5, 7, 4, 7, 7, 3, 4, 3, 0, 5, 6, 7, 3, 4, 8, 3, 7, 4, 6, 1, 4, 2, 1, 0, 4, 5, 8, 9, 1, 6, 0, 6, 6, 4, 5, 3, 6, 7, 7, 2, 1, 8, 5, 0, 7, 8, 2, 3, 8, 0, 7, 2, 5, 6, 7, 6, 3, 2, 7, 7, 7, 9, 0, 9, 4, 3, 3, 8, 4, 5, 0, 3, 2, 0, 5, 7, 5, 4, 6, 9, 3
Offset: 1
Programs
-
Mathematica
c = 1; xo = x /. FindRoot[x == Sin[x] (c + Cos[x]), {x, 1, 1.3}, WorkingPrecision -> 100] RealDigits[xo] (* A197000 *) m = 1/Sin[xo] RealDigits[m] (* A197001 *) yo = m*xo d = Sqrt[xo^2 + yo^2] Show[Plot[{c + Cos[c*x], yo - (1/m) (x - xo)}, {x, 0, Pi}], ContourPlot[{y == m*x}, {x, 0, Pi}, {y, 0, 2}], PlotRange -> All, AspectRatio -> Automatic, AxesOrigin -> Automatic]
Comments