cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A197003 Decimal expansion of the slope of the line y=mx which meets the curve y=cos(x+Pi/4) orthogonally over the interval [0, 2*Pi] (as in A197002).

Original entry on oeis.org

1, 0, 9, 3, 1, 6, 9, 7, 4, 4, 9, 8, 5, 0, 1, 6, 9, 2, 2, 0, 8, 8, 1, 5, 3, 2, 1, 4, 1, 6, 0, 5, 7, 9, 7, 1, 4, 4, 0, 4, 8, 9, 0, 6, 5, 9, 2, 9, 4, 8, 9, 8, 8, 8, 3, 5, 6, 3, 5, 1, 7, 5, 1, 3, 3, 2, 4, 9, 6, 0, 5, 3, 7, 6, 7, 0, 9, 4, 4, 7, 3, 6, 8, 3, 7, 6, 7, 0, 6, 7, 9, 9, 3, 4, 8, 1, 7, 9, 3, 4, 2
Offset: 1

Views

Author

Clark Kimberling, Oct 09 2011

Keywords

Comments

See the Mathematica program for a graph.
xo=0.3695425666075803208276560438369...
yo=0.4039727532995172093189617400663...
m=1.09316974498501692208815321416057...
|OP|=0.54749949218543621432520415035...

Crossrefs

Programs

  • Mathematica
    c = Pi/4;
    xo = x /. FindRoot[x == Sin[x + c] Cos[x + c], {x, .8, 1.2}, WorkingPrecision -> 100]
    RealDigits[xo] (* A197002 *)
    m = 1/Sin[xo + c]
    RealDigits[m]  (* A197003 *)
    yo = m*xo
    d = Sqrt[xo^2 + yo^2]
    Show[Plot[{Cos[x + c], yo - (1/m) (x - xo)}, {x, -Pi/4, 1}], ContourPlot[{y == m*x}, {x, 0, Pi}, {y, 0, 1}], PlotRange -> All, AspectRatio -> Automatic, AxesOrigin -> Automatic]
  • PARI
    my(d=solve(x=0,1,cos(x)-x)); sqrt(2-2*sqrt(1-d^2))/d \\ Gleb Koloskov, Jun 16 2021

Formula

Equals sqrt(2-2*sqrt(1-d^2))/d where d = A003957. - Gleb Koloskov, Jun 16 2021