A197005 Decimal expansion of the slope of the line y=mx which meets the curve y=cos(x+Pi/3) orthogonally over the interval [0, 2*Pi] (as in A197004).
1, 0, 3, 7, 0, 5, 7, 0, 8, 3, 7, 3, 6, 5, 1, 5, 0, 0, 4, 6, 6, 1, 4, 7, 9, 5, 8, 3, 7, 5, 8, 4, 2, 7, 7, 6, 0, 5, 2, 2, 2, 3, 4, 3, 4, 3, 1, 3, 9, 2, 5, 1, 5, 3, 1, 6, 5, 5, 2, 9, 5, 2, 4, 2, 0, 6, 8, 4, 8, 7, 9, 8, 7, 2, 3, 9, 7, 5, 1, 8, 7, 8, 7, 4, 8, 1, 7, 2, 3, 2, 2, 4, 5, 5, 9, 3, 3, 2, 8, 0, 8, 9
Offset: 1
Programs
-
Mathematica
c = Pi/3; xo = x /. FindRoot[x == Sin[x + c] Cos[x + c], {x, .8, 1.2}, WorkingPrecision -> 100] RealDigits[xo] (* A197004 *) m = 1/Sin[xo + c] RealDigits[m] (* A197005 *) yo = m*xo d = Sqrt[xo^2 + yo^2] Show[Plot[{Cos[x + c], yo - (1/m) (x - xo)}, {x, -Pi/4, Pi/2}], ContourPlot[{y == m*x}, {x, 0, Pi}, {y, 0, 1}], PlotRange -> All, AspectRatio -> Automatic, AxesOrigin -> Automatic]
Comments