cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A197005 Decimal expansion of the slope of the line y=mx which meets the curve y=cos(x+Pi/3) orthogonally over the interval [0, 2*Pi] (as in A197004).

Original entry on oeis.org

1, 0, 3, 7, 0, 5, 7, 0, 8, 3, 7, 3, 6, 5, 1, 5, 0, 0, 4, 6, 6, 1, 4, 7, 9, 5, 8, 3, 7, 5, 8, 4, 2, 7, 7, 6, 0, 5, 2, 2, 2, 3, 4, 3, 4, 3, 1, 3, 9, 2, 5, 1, 5, 3, 1, 6, 5, 5, 2, 9, 5, 2, 4, 2, 0, 6, 8, 4, 8, 7, 9, 8, 7, 2, 3, 9, 7, 5, 1, 8, 7, 8, 7, 4, 8, 1, 7, 2, 3, 2, 2, 4, 5, 5, 9, 3, 3, 2, 8, 0, 8, 9
Offset: 1

Views

Author

Clark Kimberling, Oct 10 2011

Keywords

Comments

See the Mathematica program for a graph.
xo=0.255465286103853596695882696613320272654788...
yo=0.264932084602776862434116494762571068650190...
m=1.0370570837365150046614795837584277605222343...
|OP|=0.3680373919265496189530095416155881110455...

Crossrefs

Programs

  • Mathematica
    c = Pi/3;
    xo = x /.  FindRoot[x == Sin[x + c] Cos[x + c], {x, .8, 1.2}, WorkingPrecision -> 100]
    RealDigits[xo] (* A197004 *)
    m = 1/Sin[xo + c]
    RealDigits[m]  (* A197005 *)
    yo = m*xo
    d = Sqrt[xo^2 + yo^2]
    Show[Plot[{Cos[x + c], yo - (1/m) (x - xo)}, {x, -Pi/4, Pi/2}],
    ContourPlot[{y == m*x}, {x, 0, Pi}, {y, 0, 1}], PlotRange -> All,
    AspectRatio -> Automatic, AxesOrigin -> Automatic]