This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A197010 #5 Mar 30 2012 18:57:50 %S A197010 4,6,7,2,8,1,6,0,5,3,7,6,0,1,2,1,3,3,7,8,1,6,3,0,7,2,6,8,8,4,4,2,5,0, %T A197010 1,3,8,1,1,6,5,1,4,2,4,6,7,6,6,7,0,6,4,5,1,6,4,1,1,5,8,9,7,7,7,0,6,7, %U A197010 5,6,3,4,7,2,2,9,6,3,6,4,1,5,5,0,3,8,9,3,6,1,1,6,6,2,0,5,3,7,2,2 %N A197010 Decimal expansion of xo, where P=(xo,yo) is the point nearest O=(0,0) in which a line y=mx meets the curve y=cos(x+1/2) orthogonally. %C A197010 See the Mathematica program for a graph. %C A197010 xo=0.4672816053760121337816307268... %C A197010 yo=0.5675398046001583628839615011... %C A197010 m=1.21455627200105698029988016754... %C A197010 |OP|=0.73515544514637791501789646... %t A197010 c = 1/2; %t A197010 xo = x /. FindRoot[x == Sin[x + c] Cos[x + c], {x, .8, 1.2}, WorkingPrecision -> 100] %t A197010 RealDigits[xo] (* A197010 *) %t A197010 m = 1/Sin[xo + c] %t A197010 RealDigits[m] (* A197011 *) %t A197010 yo = m*xo %t A197010 d = Sqrt[xo^2 + yo^2] %t A197010 Show[Plot[{Cos[x + c], yo - (1/m) (x - xo)}, {x, -Pi/4, Pi/2}], %t A197010 ContourPlot[{y == m*x}, {x, 0, Pi}, {y, 0, 1}], PlotRange -> All, %t A197010 AspectRatio -> Automatic, AxesOrigin -> Automatic] %Y A197010 Cf. A179378, A197011, A197002, A196996, A197000. %K A197010 nonn,cons %O A197010 0,1 %A A197010 _Clark Kimberling_, Oct 10 2011