A197015 Decimal expansion of the shortest distance from x axis through (3,4) to y axis.
9, 8, 6, 5, 6, 6, 2, 5, 5, 5, 4, 3, 5, 0, 9, 0, 1, 9, 2, 5, 4, 8, 5, 4, 4, 3, 2, 6, 6, 8, 9, 0, 5, 4, 2, 4, 3, 0, 8, 4, 7, 5, 1, 4, 6, 9, 0, 9, 0, 6, 0, 3, 2, 0, 5, 0, 7, 0, 2, 4, 9, 6, 6, 4, 5, 1, 4, 4, 2, 2, 1, 3, 9, 2, 4, 8, 3, 8, 3, 7, 8, 0, 7, 6, 5, 6, 3, 0, 4, 2, 1, 8, 6, 6, 5, 0, 3, 6, 2
Offset: 1
Examples
d=9.865662555435090192548544326689054243084... x-intercept=(6.6342...,0) y-intercept=(0,7.3019...)
Crossrefs
Cf. A197008.
Programs
-
Maple
3*(1+(4/3)^(2/3))^(3/2); evalf(%) ; # R. J. Mathar, Nov 08 2022
-
Mathematica
f[x_] := x^2 + (k*x/(x - h))^2; t = h + (h*k^2)^(1/3); h = 3; k = 4; d = N[f[t]^(1/2), 100] RealDigits[d] (* A197015 *) x = N[t] (* x-intercept *) y = N[k*t/(t - h)] (* y-intercept *) Show[Plot[k + k (x - h)/(h - t), {x, 0, t}], ContourPlot[(x - h)^2 + (y - k)^2 == .01, {x, 0, 4}, {y, 0, 5}], PlotRange -> All, AspectRatio -> Automatic]
Comments