A197017 Decimal expansion of the radius of the circle tangent to the curve y=cos(2x) and to the positive x and y axes.
2, 9, 7, 1, 0, 5, 6, 3, 5, 2, 7, 4, 8, 2, 2, 7, 1, 6, 7, 1, 2, 2, 1, 4, 4, 3, 6, 5, 2, 6, 3, 1, 6, 1, 9, 9, 4, 0, 7, 2, 9, 6, 0, 7, 1, 0, 8, 5, 6, 7, 0, 4, 0, 0, 5, 6, 7, 6, 8, 6, 4, 5, 5, 2, 4, 8, 5, 8, 2, 3, 6, 9, 4, 8, 4, 1, 8, 0, 8, 1, 7, 7, 0, 0, 6, 8, 2, 3, 8, 4, 1, 4, 6, 4, 9, 0, 9, 4, 3
Offset: 0
Examples
radius=0.2971056352748227167122144365263161994072960710...
Programs
-
Mathematica
r = .297; c = 2; Show[Plot[Cos[c*x], {x, 0, Pi}], ContourPlot[(x - r)^2 + (y - r)^2 == r^2, {x, -1, 1}, {y, -1, 1}],PlotRange -> All, AspectRatio -> Automatic] f[x_] := (x - c*Sin[c*x] Cos[c*x])/(1 - c*Sin[c*x]); t = x /. FindRoot[Cos[c*x] == f[x] + Sqrt[2*f[x]*x - x^2], {x, .5, 1}, WorkingPrecision -> 100] x1 = Re[t] (* x coordinate of tangency point *) y = Cos[c*x1] (* y coordinate of tangency point *) radius = f[x1] RealDigits[radius] (* A197017 *) slope = -Sin[x1] (* slope at tangency point *)
Comments