A197018 Decimal expansion of the radius of the circle tangent to the curve y=cos(3x) and to the positive x and y axes.
2, 1, 8, 7, 2, 9, 4, 8, 8, 8, 0, 3, 6, 4, 4, 0, 6, 5, 8, 9, 7, 2, 8, 5, 2, 2, 3, 2, 6, 8, 1, 2, 1, 0, 4, 9, 3, 0, 3, 6, 3, 6, 1, 9, 9, 7, 3, 1, 4, 1, 4, 9, 9, 5, 8, 2, 2, 1, 6, 6, 9, 4, 6, 6, 9, 0, 3, 1, 8, 5, 8, 6, 5, 0, 7, 6, 2, 9, 6, 0, 6, 3, 4, 5, 6, 6, 6, 1, 3, 7, 9, 4, 2, 8, 4, 3, 0, 0, 7
Offset: 0
Examples
radius=0.218729488803644065897285223268121049303636199...
Programs
-
Mathematica
r = .219; c = 3; Show[Plot[Cos[c*x], {x, 0, Pi}], ContourPlot[(x - r)^2 + (y - r)^2 == r^2, {x, -1, 1}, {y, -1, 1}], PlotRange -> All, AspectRatio -> Automatic] f[x_] := (x - c*Sin[c*x] Cos[c*x])/(1 - c*Sin[c*x]); t = x /. FindRoot[Cos[c*x] == f[x] + Sqrt[2*f[x]*x - x^2], {x, .5, 1}, WorkingPrecision -> 100] x1 = Re[t] (* x coordinate of tangency point *) y = Cos[c*x1] (* y coordinate of tangency point *) radius = f[x1] RealDigits[radius] (* A197018 *) slope = -Sin[x1] (* slope at tangency point *)
Comments