A197020
Decimal expansion of the radius of the circle tangent to the curve y=cos(2x) at points (x,y) and (-x,y), where 0
4, 6, 1, 9, 2, 3, 1, 8, 7, 7, 0, 5, 2, 2, 8, 2, 3, 8, 2, 1, 7, 1, 5, 3, 0, 3, 3, 3, 6, 9, 3, 8, 9, 9, 9, 9, 6, 2, 0, 4, 3, 4, 7, 2, 6, 7, 0, 5, 6, 8, 8, 6, 5, 7, 9, 7, 6, 7, 0, 6, 4, 3, 0, 3, 7, 9, 5, 1, 1, 3, 9, 4, 1, 1, 5, 2, 5, 1, 1, 1, 6, 7, 9, 9, 7, 9, 8, 7, 4, 3, 0, 9, 9, 4, 4, 1, 5, 0, 3, 6
Offset: 0
Examples
0.461923187705228238217153033369389999620434726705688657976706430379511394115251....
Programs
-
Mathematica
r = .462; c = 2; Show[Plot[Cos[c*x], {x, -2, 2}], ContourPlot[x^2 + (y - r)^2 == r^2, {x, -1, 1}, {y, -1, 1}], PlotRange -> All, AspectRatio -> Automatic] t = x /. FindRoot[c*Sin[c*x] Cos[c*x] - x == x*Sqrt[1 + (c*Sin[c*x])^2], {x, .25, .55}, WorkingPrecision -> 100] RealDigits[t] (* x coordinate of tangency point *) y = Cos[c*t] (* y coordinate of tangency point *) radius = Cos[c*t] - t/(c*Sin[c*t]) (* A197020 *) RealDigits[radius] slope = -c*Sin[c*t] (* slope at tangency point *)
-
PARI
t=solve(x=.3,.4, 2*sin(2*x)*cos(2*x) - x*sqrt(1 + 4*sin(2*x)^2) - x); cos(2*t) - t/(2*sin(2*t)) \\ Charles R Greathouse IV, Feb 04 2025
Comments